
ACI Structural Journal/November-December 2013� 1109

� discussion

The paper presents a method for the construction of the 
strength domain of concrete sections that includes a numerical 
algorithm to integrate the stress components over the cross 
section based on the integration of the governing equilibrium 
equations and constitutive laws for the constituent materials.

This discussion suggests an alternative numerical 
algorithm that could replace that algorithm to greatly 
enhance the overall method. The alternative algorithm was 
presented in Concrete International in 1995.48

A computer program implementing the method could be 
less complicated and the special needs of the constitutive laws 
of different materials could be accommodated in separate 
computer programs for each material, there being a simple 
standard protocol for input to the main computer program.

In the algorithm, the paper presents the cross section 
divided into a finite number of trapezoids with bases parallel 
to the neutral axis and the two oblique sides belonging to 
its boundary. In a general-purpose computer program, this 
would be very complicated.

In contrast, with the 1995 algorithm, each part of the 
boundary is dealt with independently of all the other parts 
of the boundary. A program implementing the algorithm can 
simply follow around the boundary.

The paper gives equations for the constitutive laws in 
Eurocode 26 and Eurocode 47 and for the softening Kent and 
Park37 law, and comments that corresponding results may 
be easily found for several other common constitutive laws. 
The inference is that these equations can be included in a 
computer program that implements the entire method and 
that that program could be later modified to accommodate 
other constitutive laws. In contrast, the 1995 algorithm 
allows for the establishment of a simple protocol to describe 
constitutive laws so that the main computer program that 
constructs the strength domain can read the constitutive laws 
as input data. Other computer programs specific to each 
material can write that constitutive law data.

In describing the implementation of the method, the paper 
illustrates that it is assumed that all boundaries of the cross 
section are straight line segments; if a curved boundary 
exists, it is assumed that this can be approximated by a 
polygonal. The 1995 algorithm also uses this assumption.

Further, the 1995 algorithm uses this assumption for the 
strain-stress relationship in the constitutive law of each 
material. Curves described by algebraic expressions as are 
incorporated into some building codes are approximated by 
a sequence of straight segments, which can be made as close 
as possible to the given curve as the number of vertices of the 
approximating segments increases.

Where curves are approximated by straight segments, a 
strain-stress relationship can be represented in a table of 
two columns: one column for strain and one for stress, with 
each line representing a vertex. This is relatively simple and 

has a clear meaning. Any strain-stress relationship can be 
represented in this way.

Computer programs to fit a sequence of straight line segments 
to an algebraic expression such as in the Eurocodes6,7 or the 
Kent and Park37 law can be developed independently of the 
general-purpose main program. The output from such a code-
specific program is a simple strain-stress table. These data 
can be represented graphically and are amenable to manual 
checking.

The algorithm presented in the paper can represent certain 
algebraic expressions exactly—possibly an advantage 
over the 1995 algorithm. However, these strain-stress 
relationships are generally only an approximation: they are 
based on intuition rather than science. The specific algebraic 
expressions that have been written into the codes typically 
fit an envisaged computation method rather than a scientific 
rationale on the properties of the material. Computations 
using a sequence of straight segments to represent an 
algebraic expression can satisfy the intent of such codes.

The 1995 algorithm is similar to the algorithm in the paper 
in that it requires a Cartesian orthogonal reference system 0, 
x, y defined such that the x-axis is parallel to the neutral axis.

The partition lines between the trapezoids described in the 
paper are parallel to the neutral axis. The y-value for each of 
these is known; being either yo , yc1 or the y-value for a vertex 
of the polygon.

The 1995 algorithm uses a sequence of y-values each 
corresponding to a vertex in the strain-stress relationship of 
the material. An equation derived from Eq. (6) is used

	 y = yo + e/K	 (26)

where e is the strain at such a vertex.
Each of these y-values is similar to the yo and the yc1 in the 

paper in that a corresponding strain is known.
By Eq. (9), the paper defines parameters m and q for each 

side of the polygon.
The variable x does not appear in Eq. (22) through (24), 

although the m and q parameters appear many times.
The parameter m would present unnecessary problems in 

a computer program implementing the method because, in 
the physical model, there are no limits on the value it can 
take. The paper points out that in the equations to determine 
m and q, Eq. (10) requires that the side of the polygon is not 
parallel to the x-axis—a reference to the same problem.

In contrast, the 1995 algorithm works with the x-values 
of the points on the perimeter of the polygon. Some of these 
need to be computed by interpolating between adjacent 
vertexes of the polygon. The part of the algorithm that 
determines which vertexes compares the subject y-value 
with the y-values of the vertexes and ensures the subject 
y-value is between those of the vertexes. The subject y is 
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was represented by 12 straight segments. Several examples 
in Collins50 used curved strain-stress relationships.
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AUTHORS’ CLOSURE
The authors are happy that their work has raised the 

interest of the discusser. Unfortunately, at the time they wrote 
the paper, the authors were not aware of the work by the 
discusser. The short 1995 paper by Thompson48 does indeed 
point out additional applications of the method presented by 
the authors, such as the construction of a limit domain for 
the uncracked reinforced concrete cross section. The limit 
domain for the uncracked reinforced concrete cross section 
shown in Fig. 1 of Thompson48 and shown herein in Fig. 13, 
would look like that shown in Fig. 14. The constitutive law 
for concrete in compression described by Eq. (12) was used 
along with a linear behavior for concrete in tension, and the 
constitutive law for steel given by Eq. (18). The numerical 
values of the material parameters are specified in Table 1.

The ultimate strength domain for the same cross section 
is shown in Fig. 15 for comparison. The limit domain for 
the uncracked cross section of Fig. 14 is contained within 

never between adjacent vertexes that have the same y-value: 
there is never a need to compute an x-value on a polygon 
side that is parallel to the x-axis.

Thus, with the 1995 algorithm, both the x- and y-values 
are either known or computed for all points on the perimeter 
where the strain equals the strain at one of the vertexes in the 
strain-stress relationship of the material.

These points, together with the vertexes of the polygon, 
divide the perimeter into segments such that within each 
segment, the perimeter is straight and the stress-strain 
relationship is linear.

Let n be the total number of such segments and let i 
identify one segment.

Let subscripts a and b denote the extremities of segment i 
such that from a to b is clockwise around the polygon.

The strain at each vertex of the polygon can be found by 
Eq. (6). Thus, the strain is known at all these points and 
therefore the stress at all the points can be obtained from the 
strain-stress relationship.

Let sa and sb represent the stress at the points a and b.
Parameters Ri, Si, and Ti are defined by the following 

equations

	 Ri = (ya – yb)(2xasa + xasb + xbsa + 2xbsb)/6	 (27)

Si = (ya – yb)[xaya(3sa + sb)  
	 + (xayb + xbya)(sa + sb) + xbyb(3sb + sa)]/12	

(28)

Ti = (ya – yb) 
    × [xa

2(3sa + sb) + 2xa	xb(sa + sb) + xb
2(3sb + sa)]/24	 (29)

These parameters summed around the perimeter of the 
polygon give, respectively, the axial force Nm in the polygon 
of the particular material and the moments of that force 
about the x and y axes, Mm

x and Mm
y.
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The four terms in the first Eq. (20) that are various 
summations of Ni

c can be replaced by one term such as Nm.
The four terms in the second Eq. (20) that are various 

summations of Mxi
c can be replaced by one term such as Mm

x.
The four terms in the third Eq. (20) that are various 

summations of Myi
c can be replaced by one term such as Mm

y.
Also, the terms in Eq. (20) that are summations of Ni

ss, 
Mxi

ss, and Myi
ss can be replaced by terms such as Nm, Mm

x, 
and Mm

y, respectively.
The 1995 algorithm was used in a computer program 

released in 1986 and was tested against a number of examples 
available in the literature at that time. It was claimed that this 
program could work with exactly the same assumptions as the 
established conventional computation methods to produce 
exactly the same results. This point was illustrated in most 
examples. Many examples came from text books such as Park 
and Paulay,16 Warner et al.,49 and Collins.50 Example 5.8 in 
Warner et al.49 included a parabolic strain-stress curve that 

Fig. 13—Reinforced concrete square cross section consid-
ered by Thompson.48

Fig. 14—Three-dimensional uncracked strength domain for 
reinforced concrete section of Fig. 13.
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constitutive laws is an approximation that, in some cases, 
is unavoidable. However, in most cases it can be avoided, 
and faster computations and exact results are the obvious 
outcome. The authors believe that the integration method 
proposed in the paper is in most cases more efficient than the 
approximation suggested in the discussion. The differences 
are only a matter of details and both methods are based 
on elementary integration formulas. Any particular user 
is likely to implement the method that is more appealing 
to his/her taste. Therefore, the authors are grateful to the 
discusser for recommending his alternative integration 
method including piece-wise linearization of the constitutive 
laws as a preliminary step. However, the authors would 
like to emphasize that the aim of the proposed method was 
the construction of the “full”-strength domain of the cross 
section, which does not involve an iterative procedure as 

the ultimate strength domain of Fig. 15, as seen from direct 
comparison or by the graphical representation of Fig.  16. 
An additional comparison is given in Fig. 17, where only 
half of the two domains considered are shown. It is clear 
from these figures that the uncracked condition considerably 
shrinks the strength domain under predominant tension and 
bending stress resultants, while the two domains are almost 
coincident under predominant compression states of stress.

The discussion shows that the work has been thoroughly 
understood, as far as the construction of the stress 
resultants is concerned, and that the procedure described 
by Thompson48 represents an alternative approach that 
might be appealing to a segment of readers with specific 
background and taste. The piece-wise linearization of the 

Table 1—Material parameters

Concrete Steel

fck, 
MPa (ksi)

afcd, 
MPa (ksi)

fctk,0.05, 
MPa (ksi)

fctd, 
MPa (ksi)

Ec, 
GPa (ksi) ect × 10–5 ec1 × 10–3 ecu × 10–3

fyd, 
MPa (ksi)

Es, 
GPa (ksi) esu

30 (4.35) 15.94 (2.31) 2 (0.29) 1.25 (0.18) 32 (4641) 3.90625 –1 –3.5 400 (58.02) 200 (29,000) 0.01

Fig. 15—Three-dimensional ultimate strength domain for 
reinforced concrete section of Fig. 13.

Fig. 16—Three-dimensional uncracked and ultimate strength 
domain for reinforced concrete section of Fig. 13.

Fig. 17—Three-dimensional uncracked and ultimate 
strength domain for reinforced concrete section of Fig. 13.

Fig. 18—Original physical model of strength domain 
by  Marín.
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form. The work by Marín36 and the method proposed by 
Thompson48 provide alternatives to the approach presented 
in the paper, which indeed works very well, as shown by 
the various examples provided. The authors believe that 
reproduction in Fig. 18 of the original model by Marín is the 
ideal conclusion to this discussion.
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implied in the paper by Thompson48 and in most of the 
literature on the subject. Avoiding the iteration procedure 
was the main motivation for the paper. The authors could 
find a precursor of the method only in the early work by 
Marín,36 who even constructed three-dimensional physical 
models of the strength domain. Meanwhile, the authors have 
established a direct contact with Professor Marín and have 
discovered the existence of fundamental work that can be 
beneficial to potential users of the method described in the 
paper under discussion.51-53 In his work, Marín shows that 
any polynomial function over a simply or multiply connected 
cross section of polygonal shape can be integrated in closed 
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The use of high-strength concrete (HSC) in the construc-
tion industry has increased because of its improved mechan-
ical properties compared to ordinary concrete. One impor-
tant issue in design consideration for reinforced HSC is 
the shear resistance of the structural members.21 Unlike 
the reinforced normal-strength concrete (NSC), the shear 
strength of reinforced HSC (RHSC) beams does not increase 
in the same proportion as the increase in the compressive 
strength of concrete. The paper provides a group of test data 
related to the shear behavior of RHSC beams without web 
reinforcement. The work and the methodology reported 
would have the positive push and fill the knowledge gap 
in understanding the behavior of RHSC members in shear. 
Some detailing needs further discussion and clarification.

HSC is comparatively a brittle material, as the sound 
matrix of aggregates and cement paste provides a smoother 
shear failure plane that leads to its abrupt failure. Conse-
quently, the shear strength of HSC does not increase in the 
same way as its compressive strength. One reason to support 
the abrupt behavior in shear of HSC is its variation of the 
fracture surface roughness. Shown in Fig. 8 of the paper, 
fracture surface roughness is drawn against the compressive 
strength, and the roughness index Rs of the fracture surface 
decreases when compressive strength of the concrete speci-
mens increases. It implies that shear failure planes in HSC 
are smoother than those likely observed in NSC. No direct 
quantitative expression has been found thus far to link the 
shear strength and the roughness index Rs of the fracture 
surface for HSC. In a term of the ductility number (DN—the 
ratio of uniaxial compressive strength to tensile strength of 
the material), one can find (as shown in Fig. 14) the likely 
higher strength of concrete is, the higher the DN and hence 
the more brittle the concrete. Figure 14 is drawn based 
the measurement of specimens reported in the paper. The 
ductility number of aggregate is between 18 and 22, coin-
ciding with most HSC specimens in the test. In this region, 
the shear strength of the concrete should remain constant, 
as was a main conclusion of the research reported in the 
paper. However, this constant shear strength is not clearly 
illustrated in the paper. Can the authors comment further on 

this issue? Besides practice, can the ductility numbers be a 
design parameter in assessing the shear strength of concrete?

To illustrate the shear strength behavior of concrete, 
based on the test results given in Table 1, the normalized 
shear strength of concrete is drawn against the compres-
sive strength in Fig. 15. It appears that the shear strength of 
concrete does not increase with the compressive strength. 

It is known that shear resistance is a factor of the tensile 
strength of concrete, shear span-depth ratio (a/d), and the 
tensile reinforcement ratio. In most cases, the tensile strength 
of concrete and tensile reinforcement ratio has a direct 
proportionality relation, and a/d has an inverse proportion-
ality relation. In account of these likely influence factors, a 
shear influencing parameter (SIP) is introduced.22 The SIP 
is defined as

	 SIP
/
tf

a d
r

= 	 (9)

where a/d is the shear span-depth ratio; and r is the tensile 
reinforcement ratio.

Fig. 14—Ductility number of concrete. (Note: 1 MPa = 
145 psi.)
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The normalized shear strength of concrete is drawn against 
SIP, as shown in Fig. 16. A similar shear performance 
varying with the shear influencing parameter is found. An 
approximating curve to evaluate the shear strength of RHSC 
beams then is developed, which is expressed as follows

	 vc = 0.0039SIP–0.944	 (10)

where vc is shear strength and SIP is shear influencing 
parameter as expressed in Eq. (10).

The lower-bound fitting curve is expressed as

	 vc = 0.0034SIP–0.92	 (11)

The test results compared with predictions based on 
Eq. (10) and (11) in Table 6. As a comparison, the Modified 
Compression Field Theory (MCFT) predictions (reducing ag 
to zero) are also given in the last column of Table 6. 

The results predicted based on the new equations are very 
promising. The average ratio of the tested-to-predicted shear 
strength of all beams based on Eq. (11) is 1.02 with a stan-
dard deviation of 0.13. Equation (11), based on the lower-
bound fitting curve, gives a mean value of 1.30 with a stan-
dard deviation of 0.18.

Compared with the MCFT method, the prediction of shear 
strength of reinforced HSC beams based on Eq. (10) and 
(11) is much more simple but with almost the same accu-
racy. The new equations can reflect the shear strength perfor-
mance in reinforced HSC members. 
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AUTHORS’ CLOSURE
The authors would like to thank the discussers for their 

interest and discussion related to the paper. The discussers 
have correctly identified the importance of understanding 
shear behavior of reinforced high-strength concrete (RHSC) 
members. The questions and ideas raised in the discussion 
are addressed herein.

The diagonal cracking shear behavior of RHSC beams 
without web reinforcement conjunction with ductility 
numbers (DN, the ratio of uniaxial compressive strength to 
tensile strength) of concrete and aggregate was discussed 
in the paper. According to the conclusions of the paper, 
the ductility number of aggregate (DNA) relative to that of 
concrete governs the fracture surface roughness and brittle-
ness. When the DN of concrete (DNC) is lower than that 
of aggregate, the shear strength increases with the increase 
of concrete strength due to the rough fracture surface and 
increased tensile strength. When the DN of the concrete coin-
cides with that of the aggregate, the shear strength remains 
constant irrespective of concrete strength. However, when 
the DNC is higher than that of the aggregate, shear strength 
starts to decrease due to smooth fracture surface and high 
brittleness of the concrete. 

The first question was on the constant shear strength 
region, where the DN of the concrete coincides with that 
of the aggregate. In this region, concrete brittleness is 

Table 6—Comparison of experimental results with 
predicted values of shear strength

Specimen

Vtest/Vpredict
*

Eq. (10) Eq. (11) By MCFT†

NSC40-I 1.17 1.51 1.12

NSC40-II 1.05 1.35 1.21

NSC40-III 0.91 1.18 1.27

HA100-I 1.29 1.63 1.06

HA100-II 1.12 1.42 1.09

HA100-III 0.99 1.26 1.13

HA120 0.94 1.19 1.08

HA160-I 1.21 1.52 0.97

HA160-II 1.00 1.27 0.91

HA160-III 0.85 1.08 0.94

LA120 0.96 1.22 1.02

LA160 0.76 0.96 0.78

Average (all beams) 1.02 1.30 1.05

Standard deviation 
(all beams)

0.13 0.18 0.13

*Vtest is experimental shear strength; Vpredict is predicted shear strength. 
†Modified MCFT method.

Fig. 15—Behavior of normalized shear strength with com-
pressive strength of concrete. (Note: 1 MPa = 145 psi.)

Fig. 16—Behavior of normalized shear strength with shear 
influencing parameter (SIP).
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the same as that of aggregate (DNC = DNA). The shear 
resistance of uncracked concrete in the compression zone 
is dependent on its brittleness.6 Therefore, the shear resis-
tance of uncracked concrete in the compression zone could 
be constant irrespective of concrete strength. The fracture 
surface roughness was slightly higher than that of high-
strength concrete (DNC > DNA) due to aggregate strength 
anisotropy17,23 (Fig. 7). Also, concrete tensile strength is 
higher than that of normal-strength concrete (NSC). There-
fore, in this region, the diagonal cracking shear strength 
stayed constant at the maximum value.

The second and last question is about the applicability of 
the DN as a design parameter in assessing the shear strength 
of concrete. According to this study, the maximum diagonal 
cracking shear strength was observed when the DNC is 
equal to the DNA.  Therefore, optimal concrete compressive 

strength region for the shear design can be found by consid-
ering the DN of concrete relative to that of aggregate. That 
is, by varying the concrete strength from NSC to HSC, the 
optimal concrete strength region for a particular aggregate 
type can be found experimentally as presented in this study 
(Fig. 6 and 8). Therefore, the authors would like to strongly 
recommend using the DN as a shear design parameter. 
However, further studies on this research area are essential.

The authors appreciate the discussers’ observation in 
predicting normalized shear strength. However, the authors 
would recommend further studies on the discussers’ idea.
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The authors have proposed an extension of the stress-field-
based models for the nonlinear analysis of discontinuity 
regions related to the structural concrete. As mentioned by 
the authors, this procedure may allow a consistent study of 
the service behavior of D-regions, usually assumed as a minor 
issue when using strut-and-tie models or the classic stress field 
models. Despite the quality of their research, some additional 
issues should be discussed to clarify some topics and enhance 
the comprehension of this very interesting paper.

Introduction
The authors have mentioned that their proposed technique, 

named Adaptive Stress Field Models, is meant to provide a 
step forward in the application of stress field models for the 
analysis and design of structural concrete. To achieve their 
objective, the configuration of the stress field models is based 
on the least complementary energy for each load step and 
includes some concepts related to the Tension Chord Model 
(Marti et al. 1998). Could the authors explain in more detail 
the effective advantages of their procedure regarding the 
other available procedures using the Stress Fields Method? 

As mentioned by the authors, several discontinuity regions 
were analyzed and the structural behavior for these cases 
were well-simulated. Unfortunately, it is not very clear 
throughout the paper if the high-quality figures obtained 
were based on automatic output results or if the figures were 
later constructed based on the interpretation of some output 
file containing the results. Could the author better explain 
the process for constructing their stress field figures?

Research significance
As mentioned by the authors, the application of stress field 

models in the design process is not fully exploited yet. One 
reason for this situation is the non-uniqueness of the design 
models, which raises the discussion of the validity of the 
models, mainly concerning ductility and service behavior. 

In the discusser’s opinion, both stress field models and 
strut-and-tie models are still not deeply used in practice 

based on the fact that the powerful commercial nonlinear 
tools available to verify the proposed models usually require 
the definition of uncountable parameters. In fact, nonlinear 
analysis of structural concrete based on this kind of powerful 
package software is far from the reality of the practicing 
engineer who needs to come up with creative solutions of 
design in a short period of time. The combination of simple 
tools as the one proposed by the authors may undoubtedly over-
come the application of both stress field models or strut-and-tie 
models. However, there are still very good and free tools avail-
able for the designers, and the authors/readers are encouraged 
to compare their procedure with the following suggestions.

To visualize the flow of stress inside a complex region, 
the free software ForcePad (available at http://forcepad. 
sourceforge.net) may be used, including the possibility of 
separation of compression and tension stresses for a better 
visualization of the stress flow. Also, optimization proper-
ties are still available that make it very easy to propose strut-
and-tie models in a qualitative way. Once the proposed strut-
and-tie models have been proposed based on the ForcePad, 
the free software CAST (available at http://dankuchma.
com/stm/CAST) may be applied to check struts, nodes, and 
design reinforcement. The combination of these two free 
tools may help the concrete structural designers greatly in 
the task of designing very complex D-regions.

A more sophisticated way to design using stress fields, also 
including nonlinear potentialities, is the application of the 
free software iConc (available at http://i-concrete.epfl.ch/), 
from which formulation is based on the Modified Compres-
sion Field Theory, one of the most advanced techniques for 
simulating the nonlinear behavior of the structural concrete. 

The discusser has the opinion that very safe design may be 
obtained using all these very simple/free tools and the divul-
gation of them is fundamental for spreading the design using 
stress fields or strut-and-tie models. The authors are encour-
aged to compare their results with the aforementioned tools to 
develop a tool that can be used in engineering daily practice.
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On the other hand, all the aforementioned tools are not 
able to give the crack width in a way that analytical proce-
dures based on reinforced concrete ties can be applied. In 
that sense, the authors should be complimented for devel-
oping a new tool incorporating at the same time possibili-
ties for optimizing stress fields and to check crack widths. 
The consolidation of this type of tool may prompt practicing 
engineers to apply the nonlinear analysis in daily practice.

Stress field models
In this topic, the authors should have presented the main 

differences between stress fields and strut-and-tie models, 
as it could appear that both procedures are the same thing. 
Strut-and-tie models have gained popularity throughout the 
years, and perhaps for that reason it is now present in struc-
tural codes worldwide.

The stress field models were developed in the 1970s and 
1980s in Zurich and Copenhagen, taking as background the 
Theory of Plasticity. In the same period at Stuttgart, strut-
and-tie models were developed in parallel and independently, 
based mainly on the equilibrium conditions initiated at the 
beginning of the twentieth century with the introduction of 
the truss analogy proposed by Ritter and Mörsh. Basically, 
the Stress Fields Method is a more general solution that may 
provide different proposals for strut-and-tie models. On the 
other hand, strut-and-tie models are basically the simplified 
result of some stress fields and it is not possible to obtain the 
stress fields from a single strut-and-tie model. The authors 
are complimented for their effort in divulgating the Stress 
Fields Method, a very important method that has already 
been included in the Swiss Structural Code SIA 262.

Formulation
In this section, it is not very clear if the proposed model is 

based on single bars of a truss, or if it is based on a combina-
tion of the aforementioned single bars (steel) and two-dimen-
sional elements (concrete), as shown ahead. The authors have 
mentioned that for truss structures, the application of their 
methodology is computationally effortless; some given exam-
ples (Fig. 2 and 5) also mentioned a truss structure. Could the 
authors explain how their procedure was implemented?

Compression stress fields
In this section, it was mentioned that the factor h in Eq. (7) 

is meant to predict the reduction of the concrete strength 
caused by the presence of transversal strains. However, it 
was not possible to find the mentioned factor in Eq. (7).  
Could the authors confirm if the factor h in their proposal is 
given by (aecc – ecc

2)/(1 + becc)?
Also regarding Eq. (7), the proposal is first based on 

the parameter fc′, but when defining the parameter Ec1, the 
parameter fc is now used. As fc′ is adopted in North America 
and fc is adopted in Europe and they have different meanings, 
a clarification of the correct expression would be helpful. 
Could the authors explain if they have tested different expres-
sions for the factor h and why they did not adopt the clas-
sical expression proposed by Vecchio and Collins (1986)?

Tension stress fields
In the discusser’s opinion, this section is one of the most 

important sections of the presented paper, as the authors 
enhanced the available models implementing concepts based 
on the Tension Chord Model proposed by Marti et al. (1998). 
However, Eq. (9) to (12) and Fig. 4 could be better explained, 

as they were simply included in the paper without explana-
tion. Could the authors better explain at least Fig. 4 in a more 
detailed way?

The authors have some concern regarding a reliable model 
for simulating stabilized and nonstabilized cracking, but 
in the presented examples, this situation is not very clear. 
Could the authors explain if they have also tested in their 
examples the model presented in Fig. 4(b)?

It is known that for B-regions (when bending deformation 
is preponderant), the moment is taken by a couple formed 
by compression and tensile forces applied at the upper and 
lower chords. Also, the tensile force in the lower chord 
(tie) is variable to equilibrate the compressive force in the 
upper chord (strut). On the other hand, in the D-regions 
(when shear deformation is preponderant), the force in the 
tie is usually constant in a way that the model presented in 
Fig. 4(b) has been applied almost as an unchangeable rule in 
many research studies. The authors are again complimented 
for their advance in simulating reinforced concrete ties.

Validation
The validation of the proposed formulation was performed 

by comparing the obtained numerical results with the test 
and nonlinear finite element results from package software 
ATENA. Could the authors briefly discuss the properties 
of the constitutive model adopted for the nonlinear finite 
element simulations when using ATENA?

In almost all simulations, the response was quite rigid 
when compared to their numerical results and test results. 
Also, in most cases it was not possible to reach the failure 
load with good precision. Did the authors include all the 
reinforcement, or did they exclude vertical reinforcement as 
they did when using their model in some examples?

For the deep beams with top load (Fig. 8 and 9) and for the 
continuous deep beam (Fig. 12), the vertical reinforcement 
was not incorporated into the models and still, good results 
were obtained. One may suppose, based on this fact, that 
vertical reinforcement has little contribution for the strength 
of wall structures when, in fact, that is not true. Vertical 
reinforcement is very important to sew cracks in the direc-
tion of the struts due to transversal tensile stress, improving 
the behavior of a structure as a whole and avoiding fragile 
failure. For that reason, it is possible to see many cracks 
parallel to the struts of the example presented in Fig. 12(d)—
that is, these cracks are based on the the lack of vertical 
reinforcement in the example.

The vertical reinforcement excluded in the examples had 
no influence in the answer, probably due to the fact that the 
strength of the horizontal ties in the lower chord of the beams 
is much lower than the capacity of the struts. However, the 
authors would be prudent to mention that this procedure is 
just an action for optimizing the construction of the models, 
and must be conducted with prudence for other situations.

For the example presented in Fig. 10, the vertical 
reinforcement has been included. Could the authors explain 
the lack of the vertical and horizontal reinforcement in the 
last figure of Fig. 10(d)? This figure gave the impression that 
the figures have been prepared based on some output file and 
not rendered automatically.

Conclusions
The authors have presented a very interesting paper 

and they should be complimented for their effort in divul-
gating the Stress Fields Method. The proposed technique, 
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incorporating these two potentialities into a single tool is the 
main contribution of the authors. The discusser encourages 
the authors to develop a graphical user interface (if they still 
do not have one) as well as to simulate other complex exam-
ples where nonstabilized cracking is more effective.

the Adaptive Stress Fields Model, employed the simplifica-
tions inherent to the stress field models, given the topologic 
evolution of the models and the crack widths in the process, 
helping to check the behavior of complex structures in the 
service state and ultimate state. The construction of a tool 

The authors list in their interesting paper numerous prom-
ising notions: Adaptive Stress Field Model (ASFM), adap-
tive structures concept, model follows energy, form follows 
energy, and least global energy.

The authors are right: “the cracking pattern is some-
times characterized by a main crack that deeply influences 
global structural behavior.” A typical example is the dapped 
end shown in Fig. 1. The most important characteristic of 
this D-region is the inclined crack in the corner. It is not 
clear how the shaded areas in the graph take this crack into 
consideration. The anchorage of the ties begins just behind 
this crack—that is, the fan-shaped struts are nice to see but 
they do not reflect the real behavior of this beam detail. The 
failure of such dapped beams occurs due to shortages of the 
horizontal and vertical reinforcement in the corner. Often, 
inclined bars are applied there to give the necessary strength 
to this D-region. It would be helpful if the authors could 
show how the ASFM overcomes the aforementioned short-
ages and how it indicates the necessary amount and correct 
distribution of reinforcement in the corner region.

Dealing with the tension stress fields, the authors write 
that nonstabilized crack occurs when the length of the tie 
with constant stresses is not enough to allow the formation 
of stabilized crack pattern. This is not true. Figure 4(c) is not 
correct, as well: the crack pattern along a tie with changing 
tensile stresses has nothing to do with nonstabilized cracking. 
Please clarify.

The authors validate their models on the deep beams 
tested by Leonhardt and Walther (1966).  The stress field 
models (Fig. 8(a) and (c)) simulate all horizontal deep beam 
reinforcements—that is, also the horizontal bars of the 
“appropriately distributed minimum reinforcement,” which 
always must be applied when strut-and-tie models (STMs) 
are used at design. It is quite unusual to take into account 
this reinforcement. The authors need the nodes delivered by 
these supplementary bars to achieve the possibility of mini-
mizing the complementary energy. Nevertheless, the supple-
mentary bars increase the energy. Neglecting them would 
let the energy decrease. Why do the authors take them into 
account? Please clarify.

The ASFMs shown in Fig. 8 raise some interesting ques-
tions. The first two models in Fig. 8(a) and (c), respectively, 
show the uncracked deep beams. Nevertheless, the adaptive 
stress fields and the STM given there do not reveal the elastic 
state of stress. Please clarify as to why.

In the dark gray regions, one can guess the course of the 
struts. In most cases, the struts do not change their direction 
in the nodes. This should mean that the auxiliary horizontal 
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reinforcing bars are quite stressless. Why undergo the entire 
calculation procedure?

Deep beam WT2 particularly showed a very pronounced 
main crack (Fig. 9(a)). The authors correctly mentioned in 
their paper that, for a reliable model, the consideration of 
nonstabilized cracking is essential. How was this type of 
cracking taken into account at the development of the adap-
tive stress field for WT2? The authors show stabilized crack 
patterns in the figures. Why?

It might be asked, too, how the global energy dissipated 
by the numerous thin cracks could approximate the energy 
of the few wide cracks? Please clarify.

After tedious calculations with the help of their ASFM, 
the authors make from the deep beams (D-regions) “ordi-
nary” beam sections. Leonhardt and Walther (1966) already 
concluded in their report that “before cracking the deep 
beams behave according to the theory of vertical plates 
assuming homogeneous material. After cracking, however, 
the actual stresses deviate quite significantly from the 
theoretical ones. The actual stresses in the reinforcement 
of the tension chord remain much smaller than the values 
corresponding to the concrete tensile stresses according to 
the theory of vertical plates; this is due to the increase in 
the lever arm of the internal forces.” The authors have now  
demonstrated it after great efforts. As a consequence, how 
can the deep beam—one of the most characteristic arche-
types of the D-regions—be excluded from the exclusive 
club of discontinuity regions? Do the authors need the nodes 
delivered by the auxiliary reinforcement to demonstrate this 
behavior of the deep beams or would the “simple” finite 
element method reveal the same? Please clarify.

How were the maximum crack widths calculated from the 
equidistant cracks shown in Fig. 8(b) and (d)? Please clarify.

How was the failure of the deep beams by the ASFMs 
perceived? Was it the minimal global energy, the yielding 
of the horizontal reinforcement, or a threshold level of 
the concrete stress at the support? Please clarify. Note: 
WT2 failed due to fracture of the tensile reinforcement at 
middle of the span, and WT3 failed due to overstressing of 
the concrete above the right support.

How were the shaded areas for the struts as shown in 
Fig. 8(a) and (c) found?

A comparison of the numerical and test results for the 
deep beams with suspended loads raises further questions. 
In their model, the authors take three layers of distributed 
reinforcement into account. Why? How can a designer make 
the decision about the number of layers?
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According to the force-mean strain curves, ASFM shows 
WT6 as weaker and WT7 as more rigid than the test curves. 
The stress field configurations and crack patterns (c) and (e) 
yielded by the ASFM do not show any similarities to the 
crack patterns shown in (d) and (f). The shaded patterns here 
are similar to those shown in Fig. 9(b) and (e). Nevertheless, 
in the case of WT6 and WT7, the shaded areas cover heavily 
cracked regions, whereas in the case of WT2 and WT3, the 
shaded regions are uncracked. It would have been inter-
esting to learn the crack pattern determined with ASFM. The 
agreement as mentioned by the authors cannot be seen at 
all. Please clarify. Which kind of failures did ASFM predict? 

Opposite to the assertion of the authors, no agreement 
between the numerical and experimental results in the case of 
the continuous deep beams can be noticed at all. The shaded 
areas cover uncracked regions at both ends of DWT2, whereas 
the shaded regions around the middle support are cracked 
through and through. Where are the main tension ties above 
the central support according to the ASFM? Are the tensile 
stress distributions similar to those attributed to “deep beams” 
or to “continuous beams”? As shown in Fig. 12(c), in DWT2, 
the tensile reinforcement above the central support was placed 
in the lower half of the depth. The shaded areas—that is, the 
flow of forces—did not show any reference to these ties. Are 
these reinforcing bars in tension or in compression? At which 
position should the tension reinforcing bars be placed above 
the central support? The flow of forces provided by the ASFM 
does not present the structural behavior at all. Which kind of 
failure did ASFM predict?

At dimensioning, the designer needs the inner lever arm for 
calculation of the load-bearing capacity and the steel strain for 
the crack control. How does the ASFM assist the designer at 
solving these two everyday questions? Please clarify.

The authors are encouraged to improve their model so that 
it becomes a legitimate support for the engineer. For the time 
being, the model cannot be considered validated.

AUTHORS’ CLOSURE
Closure to discussion by Souza

The authors kindly appreciate the comments and the 
discussion provided by Souza and his interest in the paper. 
Detailed replies to his questions, by section heading, are 
presented as follows:
•	 Introduction—Unlike other methodologies, Adaptive 

Stress Field Models intend to set a suitable stress field 
model and then select the appropriate variables that 
will be adjusted: model geometry, forces, or both. This 
procedure allows the engineer to clearly understand 
behavior of the structure before starting analysis—
an essential guideline for a critical evaluation of the 
results. Furthermore, the graphical interaction provides 
a valuable tool for understanding structural behavior 
and correcting possible inaccuracies of the model.

•	 Introduction—The field widths are semi-automatically 
entered in the calculation and the output is, essentially, 
the model resultants geometry together with the 
previously inputted field widths. However, the final 
drawings are adjusted manually. The authors are now 
trying to develop an automatic tool to draw stress fields.

•	 Research significance—The authors appreciate the 
comments in this chapter of the discussion. The 
main advantages of the presented methodology 
when compared with other automatic tools were well 
explained. A final comment should be given to apply 

this methodology: the user must set an initial stress 
field model—that is, the intention was not to provide a 
guidance tool for developing strut-and-tie models, but a 
methodology to assess strut-and-tie models.

•	 Stress field models—The authors used the term “stress 
field models” whenever the field widths are computed 
and may be used for analysis procedures. The term 
“strut-and-tie model” was used to refer to the resultant 
model, where only equilibrium conditions may be 
applied to compute the resultant forces. The authors 
are aware that both terms refer to the same; however, to 
extend the concept to evaluate structural behavior, it is 
necessary to know the field widths.

•	 Formulation—The forces in the bars are calculated 
according to equilibrium of single bar models. Knowing 
the resultant forces and the element widths, it is possible 
to calculate the elements stress state as presented in 
the sections “Compression stress fields” and “Tension 
stress fields”. Applying the mechanical proprieties of 
the materials, strains are calculated and therefore are 
complementary energy of each element. 

•	 Compression stress fields—The factor
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depends on the transversal tensile strains and the authors 
apologize for not defining it explicitly.

•	 Tension stress fields—Figure 4 shows the stress and 
strain state in a reinforced concrete tie. Knowing the axial 
force in the element, the concrete and steel stresses are 
calculated following the principles of the Tension Chord 
Model. With the materials’ constitutive relationships 
it is possible to calculate crack widths, strains, total 
elongation, and mean strains. The main goal is to achieve 
an N-em law to compute the complementary energy 
of a reinforced concrete tie. It was possible to apply a 
common constitutive relationship as presented in, for 
example, CEB-FIP MC 90 (1993); however, the authors 
intended to simulate the situations of nonstabilized 
cracking. This was achieved by applying Tension Chord 
Model concept assuming that the reinforced concrete tie 
has variable axial force (refer to Fig. 4(c)), providing 
different N-em behavior (refer to Fig. 4(d)).

•	 Validation—The constitutive relationships adopted in 
the nonlinear finite element model were: concrete—
Poisson coefficient of 0.2; tension stiffening function—
exponential; fracture energy—0.0000294 × fc; cracking 
model—crack rotating; compression strain associated 
to fc—(ec = –0.0022); compression strength reduction 
due to cracking—0.8; shear factor rg—variable; tension/
compression interaction—Hyperbole A; steel—bilinear 
with hardening after yielding; bond—Bigaj (Fig. 13); 
calculation method—arc-length.

•	 Validation—In fact, the vertical reinforcement 
efficiently controls crack width avoiding fragile failure. 
The compression reduction due to transversal tensile 
strains is less important due to this reinforcement. 
However, with a simple calculation and excluding the 
node regions, the compression stresses are relatively 
small within the deep beams, and thus the effect of 
transversal strains in the compression strength does 
not lead to much difference in the global behavior. For 
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that reason, the authors choose to disregard the vertical 
reinforcement. This was a simplification that may not 
be applicable in other situations. The authors mention 
this effect at the Conclusions section of Lourenço and 
Almeida (2013): “a more detailed analysis should be 
performed when important compressive stresses cross 
diagonal ties with significant transverse strains induced.”

•	 Validation—In fact, the horizontal and vertical thicker 
lines are missing in Fig. 10(d), but they were considered 
in the analysis.

•	 Conclusions—The authors are now trying to develop a 
more “user-friendly” tool and also applying the Adaptive 
Stress Field Model concept to reversal loading.
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Closure to discussion by Windisch
The authors kindly appreciate the comments and the discus-

sion provided by the discusser and his interest in the paper. In 
the following, detailed replies to his questions are presented:
•	 If no inclined reinforcement is adopted at the dapped 

beam, the stress field presented in Fig. 1 trustingly 
represents the load path at ultimate limit state. In 
Lourenço and Almeida (2013), the authors discuss 
the importance of inclined reinforcement in a dapped 
end beam. In cases with high bending moments and/
or shear forces, inclined reinforcement is required to 
effectively control the corner crack. In the particular 
case of the model presented in Fig. 1, the inclined 
crack at the corner may be derived by the bidirectional 
tension stress state represented by the horizontal and 
vertical ties. Furthermore, as mentioned in the paper, 

the stress field models are recognized by the valuable 
information concerning the anchorage length and node 
region detailing.

•	 The authors refer to nonstabilized cracking for cases 
where a main crack occurs in the region and the behavior 
is mainly influenced by the continuous opening of the 
main crack. The authors had no intention to mislead 
the idea of nonstabilized cracking with crack formation 
phase. The reinforced concrete tie represented in 
Fig. 4(c) and the “mean behavior” at Fig. 4(d) intend 
to simulate situations characterized by a main crack. In 
fact, a stiffer behavior is obtained for this kind of tie and 
the used energetic criteria lead to a model adjustment 
that increases the forces in these ties, simulating well 
the effect of a main crack.

•	 For discussion on deep beams, the following comments 
are presented:
•	 The consideration of the horizontal bars is essential 

to predict the gradual increase of the inner lever 
arm. Otherwise, if only the main reinforcement is 
considered, a sudden increase of inner lever arm 
is obtained immediately after cracking of the main 
reinforcement.

•	 The stress field model shown in Fig. 8(a), before 
cracking (loads 50 to 150 kN [11.24 to 33.72 kip]), 
model geometry provides the elastic inner lever 
arm of a deep beam. However, because the ties are 
placed according to reinforcement layout, elastic 
trajectories are not explicitly represented. This will 
slightly compromise the behavior before cracking; 
however, it is most suitable after cracking, in which 
its prediction is the main goal of the analysis.

•	 The slight changes in the inclination of the struts may 
not be visible but they exist. This aspect is essential 
for predicting the forces in the horizontal ties.

Fig. 13—Bond law used in finite element program ATENA.
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•	 The main crack observed occurred after yielding 
of the reinforcement and just before deep beam 
failure (refer to Fig. 8(b), Load versus Maximum 
Crack Width test diagram). The crack layout is 
illustrative and does not intend to reproduce the 
right crack width and crack spacing.

•	 The presented technique may be an alternative 
to the finite element method. However, the 
authors considered that in the first steps of 
this new methodology, it should be applied 
for the assessment of strut-and-tie models. 
The sophisticated nonlinear analyses provided 
nowadays are reserved for a few researchers 
and hardly used by designers. Furthermore, it 
disregards the main objective—to provide guidance 
for the designers. It is expected that an experienced 
user of nonlinear finite element programs can 
provide better results of a specific region than 
the proposed technique. The main question is: 
Is such sophistication necessary? Is it possible 
to develop a new and simpler tool that can easily 
provide guidance for the designers? Stress fields 
are first defined as a reproduction of discontinuous 
compression and tension fields due to the load path 
deviation for any geometric and static conditions. 
Rather than a formulation based on abstract physical 
quantities, a clear physical meaning is envisaged 
through the visualization of the flow of forces. The 
Adaptive Stress Field Model (ASFM) is based on a 
set of adequate simplifications but does not disregard 
the main physical phenomena of structural concrete 
regions and, moreover, provides an unprecedented 
awareness of the structural behavior, which is 
essential for any researcher or designer. A key 
phrase may be applied: Think, judge, and feel the 
structural behavior before analyzing.

•	 The crack widths are calculated according to the 
Tension Chord Model concept.

•	 Both deep beam failures were due to node’s 
compression. In the ASFM it was established the 
maximum compression at node region, and the load 
increment stops whenever that limit is reached.

•	 The strut widths were obtained according to the 
common equilibrium and boundary conditions for 
developing stress fields.

•	 Concerning the deep beams with indirect loads, the 
following comments are presented:
•	 The number of layers of reinforcement must be 

selected wisely before starting the analysis. The top 
layers of reinforcement are with very low stresses, as 
it is possible to see from the strut geometry through 
the loading process and thus they were disregarded.

•	 The shaded areas represent the strut widths; 
however, there are ties anchoring at that region, 
providing a biaxial stress state in the shaded area 
that lead to cracks. It is clear in Fig. 11(c) to (f) 
that the WT6 inner lever arm almost reached the 
effective height of the deep beam, which is not 
evident in deep beam WT7.

•	 Both deep beams failures were due to node 
compression.

•	 For the continuous deep beam test comparison, the 
following comments are presented:
•	 The ASFM steel stresses obtained agreed well 

with the test, especially regarding the bottom main 
reinforcement. Note that the test steel stresses 
were measured by glued gauges at reinforcement 
and the analytical analysis did not include the 
thickness enlargement over the support. These 
aspects could slightly compromise the final 
results comparison; however, the main behavior 
is assumed to be well-simulated.

•	 The ASFM main support ties were placed where 
the main reinforcement is provided, and the tension 
stresses are presented in Fig. 12(b). These bars are 
always in tension along the loading process.

•	 After cracking, the tensile stresses do not behave 
like “deep beams,” but do not reach “continuous 
beams” behavior. It is observed an increase of the 
“support inner lever arm” but did not reach the full 
height of the deep beam.

•	 In Lourenço and Almeida (2013), the reinforcement 
position above the central support is discussed, 
analyzed, and assessed. In fact, the presented 
methodology was mainly applied for assessment 
of strut-and-tie models to solve the main designer 
questions when applying these models.

•	 The authors considered that the main behavior 
of the continuous deep beam was well-simulated 
besides slight differences in results.

•	 The authors presented a new methodology for 
analyzing D-regions’ structural concrete behavior. The 
technique provides an excellent awareness of the flow 
of forces during the loading process and also provides 
the crack widths. This kind of tool allows a check of 
complex regions at service loads and ultimate state. 
The methodology was validated in other D-regions that 
were not presented in the current paper, and the main 
structural behavior was always well-simulated. In fact, 
the authors believe that other methods may retrieve 
similar results; however, the main intention was to 
follow consistently the stress field method, which is 
considered to be the only way to really assess the design 
with strut-and-tie models.
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In the Introduction, the authors refer to the “general 
and simplified energetic criteria mentioned by Schlaich 
et al. (1987).” These criteria were never proven. Further 
on, they state that “an appropriately distributed minimum 
reinforcement shall be used where no main reinforcement is 
required.” Nevertheless, in Lourenço et al. (2013), the hori-
zontal bars of this minimum reinforcement were involved 
in the Adaptive Stress Field Model (ASFM) as active ties. 
What is now true? Please clarify.

For both design strut-and-tie models for pier of viaduct 
(Fig. 1(a)), the authors choose the inner lever arms to 0.7L. 
This value contradicts the research of Lourenço at al. (2013) 
in the same journal: the deep beams in that study behaved 
like B-regions; hence, the inner lever arm could be chosen to 
0.9L or even more. Please clarify.

From the two deep beams with top loads referred to in this 
paper, Fig. 2 shows the deep beam with the stronger reinforce-
ment. In the ASFM, both the main and the distributed rein-
forcement are simulated. This represents two contradictions: 
1) the additional minimum web reinforcement is placed 
“to equilibrate a significant fraction of the concrete tensile 
strength that overcomes locally after cracking” and not to 
contribute to the calculated load-bearing capacity; and 2) the 
energy spent by this additional reinforcement unnecessarily 
lets the global energy level of the model increase, whereas 
it should be minimum. Please clarify. The inner lever arm 
variation shown in Fig. 2(e) reveals that to fulfil the service-
ability limit state conditions, the elastic-based strut-and-tie 
model should be applied.

   The conclusions with reference to the deep beam with 
As = 306 mm2 (0.474 in.2) do not refer to any test of Leon-
hardt and Walther (1966), where the weaker reinforcement 
was As = 214 mm2 (0.331 in.2). In the latter case, a very 
pronounced crack developed in the deep beam. This contra-
dicts the proposal of the authors because the designer has no 
freedom to choose the design strut-and-tie model: he is well 
advised to adhere to the elastic-based model.

The models for the deep beams with suspended loads and 
the conclusions cannot be validated with Leonhardt tests, 
as none of the tested models had the main reinforcement as 
referred to in Fig. 3.

   The tests of Sahoo et al. (2012) with the model of Schlaich 
et al. (1987) revealed that this deep beam with opening does 
not behave like a dapped end but needs a continuous tie 
between the two supports. The first cracks occurred under 
the opening; hence, without a continuous tie, the “column” 
over Support A would immediately fail and the deep beam 
would “fall to its knees.” 

A shortcoming of the paper was that the three design strut-
and-tie models shown in Fig. 7 do not resolve lingering ques-
tions for designers: which percentage of the total vertical 
load shall be equilibrated by an inclined reinforcement and 
how much orthogonal reinforcement shall be applied if no 
inclined reinforcement is desired? How can the ASFM help 
the designers? What was the reason to show these quite 
well-known, but non-validated, models? Comparing the 

reinforcement patterns shown in Fig. 7, large differences 
can be detected (which contradict the minimum energy 
concepts). Table 1 compares the reinforcement patterns 
showing the relevant cross-sectional areas multiplied with 
the bar length shown in the side views.

Significant differences can be detected:
•	 The amounts of the dapped end horizontal reinforcement 

of the vertical reinforcement and that of stirrups vary, 
1:3.6;

•	 The amount of the inclined reinforcement varies, 6:1; and
•	 The total values increase moderately; approximately 

25%.
 A validation should have been indispensable. Please 

clarify. The authors are encouraged to improve their model 
to provide essential guidance to the designers.
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AUTHORS’ CLOSURE
The authors thank the discusser for his interest in the paper. 

Detailed replies to his questions are given in the following:
The general Schlaich et al. (1987) criterion is a simplified 

indication, but very useful in practice. It should be noted that 
sometimes this criterion cannot be applied without any other 
further analysis. Applying the simplified energetic criteria 
to deep beam models may lead to the assumption that the 
model that leads to the less main reinforcement is the most 
adequate. This would be achieved by exploiting the full 
height of the deep beam for the inner lever arm. However, 
in these cases, the computation of the compression stress 
fields’ energy is essential for a correct judgment of the strut-
and-tie model for the design. This may avoid a deficient 
service behavior, as is well-explained in the discussed paper, 
especially for continuous deep beams and deep beams with 
suspended loads.

A good engineering approach requires the adoption of “an 
appropriately distributed minimum reinforcement,” which 
should also prevent premature failures at the cracking load. 

Table 1—Comparison of amounts of 
reinforcement in dapped-end models

Models

Dapped-end 
horizontal 

reinforcement, 
mm3

Inclined 
reinforce-
ment, mm3

Vertical 
reinforce-

ment,
mm3

Stirrups,
mm3

Total,
mm3

(b) 460 3700 510 770 5440

(c) 920 2460 860 1665 5905

(d) 1640 615 1825 2625 6705

(d)/(b) 3.6 0.17 3.6 3.4 1.2

Note: 1 mm3 = 6.1 × 10–5 in.3.
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As is usual in reinforced concrete structures, such reinforce-
ment, although frequently neglected in practice, can slightly 
increase the ultimate load of the structure. In the mentioned 
example, Lourenço and Almeida (2013) address the model 
validation by comparison with experimental results and, 
thus, it was considered relevant to involve the minimum 
reinforcement. It does not mean that the designer needs 
to regard the minimum reinforcement in the strut-and-tie 
model for the design of a specific region. 

For the pier of the viaduct presented in Fig. 1(a), the 
main problem would certainly not be the reduction of steel 
reinforcement. As was pointed out, inner lever arms of 
approximately 0.7L indirectly ensure an appropriate service 
performance; on the other hand, the assessment of models at 
the service load level has shown that quite large deviations 
from the elastic solution can be tolerated without greatly 
affecting the service behavior.

In fact, as the discusser may have noticed in Fig. 2(f), 
despite such important internal redistributions observed, the 
steel stresses between 150 and 250 MPa (21.8 and 36.3 ksi) 
and crack widths at the service load level remained at quite 
appropriate levels.

In the presented assessment studies, the adopted steel 
reinforcement amounts do not refer to Leonhardt and 
Walther (1966) tests. The main objective is to discuss within 
which limits the designer can choose the model, preventing 
deficient service behavior and/or premature failure. The 
analyzed models are representative of several discontinuity 
regions, simulating the general model of a particular discon-
tinuity region or possibly be included in more complex 
models. For this reason, the proposed indications may 
provide guidance for the proper design and detailing of most 
of the structural concrete regions.

The deep beam with the opening was not analyzed in the 
paper. It intends to illustrate a dapped-end beam model. 
Concerning the well-known Schlaich et al. (1987) model, 
further knowledge is given in the paper of Breña and 
Morrison (2007). 

Concerning re-entrant corner models (Fig. 7 and 8), it 
is clearly pointed out that inclined reinforcement must be 
designed to equilibrate more than 50% of the vertical load, 
as suggested in FIP Recommendations (1999); in fact, 
referring to service behavior, the stress redistribution that 
occurred immediately after cracking kept steel stresses at 
both orthogonal and inclined reinforcements at appropriate 
levels, suggesting low-to-moderate crack widths.

The mentioned “contradiction” and “differences” referred 
to by the discusser concerning the dapped-end beam model 
probably results from a misunderstanding. The amounts of 
reinforcement presented in Table 1 are only comparable for 
the total reinforcement. The remaining ratios are pointless. 
The models that provide better behavior at service loads are 
(b) and (c) models, which have less “total reinforcement.” 
Indeed, model (b) gives a slightly improved behavior (less 
steel stresses at service loads) than model (c), which is in 
accordance with the simplified energetic criteria proposed 
by Schlaich et al. (1987).

The Adaptive Stress Field Model (ASFM) extends the 
application of stress-field-based models for the nonlinear 
analysis of structural concrete discontinuity regions, allowing 
a consistent study of service behavior and ductility aspects. 
It is an alternative to nonlinear finite element analysis. More 
refinements will be performed but, in the authors’ opinion, 
ASFM is presently an excellent approach to address the 
study of the model’s assessment topics.
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Based on bending-torsion, shear-torsion, and bending-
axial compression interactions in bridge connections, 
a unified formula for calculating the ultimate state of 
reinforced concrete members was obtained, and interaction 
equations of various types were deduced by the authors. 
Similar topics were studied before, and it is interesting that 
such studies are extended to all combined loading conditions 
in this paper. However, some findings are still questionable 
and are worthy of further discussion.

The experimental data of Mattock and Wang31 were cited by 
the authors to determine the coefficients of Eq. (23) to obtain 
Eq. (24). The shear-bending interaction was quantitatively 
described by Eq. (24) in this paper, but the scopes of applica-
tion and limiting conditions for Eq. (24) were not given.
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The definition of shear-bending interaction seems ambig-
uous in this paper. Moreover, it is not based on any mechan-
ical analysis. As is known to all, when members subjected to 
combined loading of bending, shear, and torsion, due to the 
spatial characteristics of torsional failure, the longitudinal 
reinforcement and stirrups resist torque together. Meanwhile, 
the longitudinal reinforcement resists bending moment and 
the stirrups resist shear force, respectively. Because bending 
moment and shear force are related by torque, will it still 
exist if there is no torque? According to the definition of the 
bending-torsion interaction for symmetrically reinforced 
sections, the torsional capacity is reduced because of the 
effect of bending moment, and the flexural capacity is also 
affected by the existence of torque. Nevertheless, the inter-
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action proposed to evaluate the influence of bending moment 
on shear failure still seems questionable.

Kani’s37 “valley of diagonal failure” indicates that the 
shear strength varies non-monotonically with shear span-
depth ratio. The relation between the shear-bending interac-
tion proposed by this paper and the shear capacity affected 
by shear span-depth ratio is somewhat elusive. In terms of 
mechanism, how is the shear capacity of beams with web 
reinforcement related to bending moment? 

As for uniform cantilever beams without web reinforce-
ment under a vertical concentrated load at the free end, the 
flexural capacity depends entirely on the amount of longi-
tudinal reinforcement and the relative depth of compressive 
area. The increasing stirrups will not have any effect on flex-
ural capacity, but can resist additional shear force.

Provided that simply supported beams are subjected to 
vertical loads, no matter how the span varies, maximum 
shear force and zero bending moment will occur simultane-
ously in the support sections. According to Eq. (24), if M = 
0, the value of V will always equal to 2V0, which is obviously 
unreasonable.

Obvious mistakes exist in these data of Tables 1 and 2 of 
the original paper. In accordance with the experimental data 
of Mattock and Wang,31 relevant results are recalculated by 
the discusser (the results calculated by Russo38 are consistent 
with the discusser’s). The values of Vexp /V0 and Mexp /M0, by 
means of Eq. (14), (15), (20), and (21) provided by this paper 
or its errata (the relevant requirements of ACI 318-052 are 
also used as a reference) are reported in Table 11. Actual 

section details and results of test beams are listed in Table 12. 
A comparison between the authors’ results and actual results 
is shown in Fig. 9.

From Table 11 and Fig. 9, it can be concluded that the actual 
results are inconsistent with the authors’, and the behavior of 
shear-bending members does not agree with Eq. (24). The 
mean of the experimental data of Eq. (24) is 1.49 rather than 
1.03, which implies that Eq. (24) is meaningless. The reason 
for this is that the original test data have been modified by 
the authors, which is difficult for the discusser to understand.

From Table 12, it can be seen that only Beam C210-S0 is 
symmetrically reinforced. Notwithstanding this, all the As′ 
of other six beams have been changed to be close to As in this 
paper (refer to Table 1).

In the study of shear-bending-axial compression interac-
tion, Eq. (28) was also calibrated by using the experimental 
data of Mattock and Wang,31 but As′ = 157 mm2 (0.24 in.2) 
was mistakenly replaced by As′ = 1570 mm2 (2.4 in.2) 
in Table 3 of the original paper. According to the actual 
experimental data given by Mattock and Wang31and these 
formulas provided by this paper, the ratio of the experimental 
results to the calculated value of Eq. (29) should have a mean 
of 1.46 rather than 1.14, which is the value calculated by the 
authors. In addition, it is incomprehensible to the discusser 
that four simple span test specimens with symmetrically 
reinforced sections were not quoted by the authors.

The unified calculation method proposed by this paper is 
for symmetrically reinforced sections; however, some other 

Table 11—Comparison of actual results and shear-
bending interaction formula

Specimen Vexp /V0 Mexp /M0 Value of Eq. (24)

Mattock and Wang31 average = 1.49

C205-D10 1.779 0.769 1.560

C205-D20 1.570 0.767 1.383

C210-D0A 1.475 0.956 1.500

C210-S0 1.686 0.980 1.691

C305-D0 1.360 0.885 1.348

C310-D10 1.128 1.104 1.422

C310-D20 1.188 1.162 1.515

Table 12—Actual section details and results of test beams used in Table 11

Beam No. bw, mm h, mm d, mm As, mm2 As′, mm2
Diameter, 

m s, mm fy, N/mm2 fy′, N/mm2 fyt
*, N/mm2 fc′, N/mm2 Vexp, kN Mexp, kN.m

C205-D10 150 350 315 1232 157 6 160 361 353 354 23.2 137.4 86.6

C205-D20 150 350 315 982 157 6 160 387 353 354 24.3 122.6 77.3

C210-D0A 150 350 315 1232 157 6 80 361 353 354 27.2 176.6 111.3

C210-S0 150 350 315 1232 1232 6 80 361 361 354 23.0 196.2 123.6

C305-D0 150 350 315 1232 157 6 160 361 353 354 26.0 108.0 102.1

C310-D10 150 350 315 1232 157 6 80 360 353 354 24.3 132.5 125.2

C310-D20 150 350 315 1232 157 6 80 360 353 354 24.5 139.8 132.1
*fyt is yield strength of transverse reinforcement. 
Notes: 1 mm = 0.0394 in.; 1 mm2 = 1.552 × 10–3 in.2; 1 N/mm2 = 145 psi; 1 kN = 0.225 kip; 1 kN.m = 8.87 kip-in.

Fig. 9—Comparison between the authors’ results and 
actual results.
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specimens with asymmetrically reinforced sections (refer to 
Tables 4 and 6 of the original paper) have also been quoted.
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AUTHORS’ CLOSURE
The authors are grateful to the discusser for his interest 

and perspective related to the paper. Detailed replies to his 
questions and comments are given herein.

Bending-shear interaction
In this paper, the main objective was to propose a unified 

equation to calculate the strength of reinforced concrete 
members, including the interaction between bending, 
shear, torsion, and axial compression. Different interactions 
between structural actions can be deduced directly from 
the proposed formula. The parameters of different inter-
action formulas are determined using experimental data. 
The questions proposed in the discussion are all related to 
bending-shear interaction, which is only one type of interac-
tion. However, the comments and questions proposed by the 
discusser are valuable to the bending-shear interaction part. 

The bending-shear interaction formula (Eq. (24)) was 
derived from test data. Its application and limitations were 
not researched as part of this study. More experimental data 
should be compared with Eq. (23) to verify the formula, and 
further research regarding its application and limitations 
is required.

In regards to the discusser’s point about bending-shear 
interaction, the definition of interaction used in this paper 
should be clarified. It was defined that the capacity of a 
member will be influenced by the interaction of different 
structural actions on the member. No attempt was made to 
study the influence of reinforcement to the force capacity. 
For bending-shear interaction, bending capacity will be 
influenced by shear force and shear capacity will be influ-
enced by bending moment. This can be verified using 
the interaction formula in Hsu and Mo’s39 book, Unified 
Theory of Concrete Structures, the interaction diagram of 
Vecchio and Collins,11 and the interaction diagram drawn by 
Bentz’s12 software Response-2000. From their interaction 
formulas or diagrams, even when torsional forces are not 
applied to the member, the shear capacity will be influenced 
by the magnitude of bending moment, indicating that there 
is bending-shear interaction. Moreover, in various codes and 
standards, the aspect ratio M/(Vd), which is an index for 
considering bending-shear interaction for the shear capacity, 
should be considered in the shear strength formula. This also 
indicates that bending-shear interaction exists.

In the shear capacity formula, aspect ratio is included 
for considering its effect to shear strength. In fact, aspect 
ratio is only an index that considers bending-shear interac-
tion for the shear capacity of reinforced concrete members. 
In this research, although aspect ratio is not included in 
Eq. (24), the bending-shear interaction has been considered. 
Equation (24) and the aspect ratio are two different ways 
to consider bending-shear interaction. This study used 
another approach to consider bending-shear interaction. As 
long as Eq. (24) can fit into experimental results well with 

a small coefficient of variation, it reflects bending-shear 
interaction well.

The discusser questioned the effectiveness of shear 
reinforcement to flexural capacity. As stated before, the defi-
nition of interaction is that the capacity of a member will be 
influenced by the interaction of different structural actions on 
the member. The research did not attempt to investigate the 
influence of shear reinforcement on bending moment. The 
authors agree that shear reinforcement has little influence on 
flexural capacity, but the authors believe that bending-shear 
interaction exists in the bending-shear components.

The discusser raised the question that if M = 0, the value of 
V will always be equal to 2V0, which the discusser regarded 
as unreasonable. It is true that the bending-shear interac-
tion formula cannot satisfy pure shear force. To solve this 
problem, the boundary of the bending-shear interaction 
formula was limited in the paper. As shown in Table 8, for 
pure shear force, the three parameters a1, a2, and a3 are 
all equal to 1, which means V = V0. The pure shear and 
bending-shear interaction is shown in Fig 10. The shear 
strength will not be equal to 2V0, but V/V0 will be close 
to 2 when M/M0 is small. From Fig. 9 and Table 11, in which 
the discusser showed the experimental comparison result, 
V/V0 indeed can get very close to 2, indicating that the shear 
strength in the bending-shear interaction equation is not very 
conservative. The comments proposed by the discusser are 
very valuable to further research to make the bending-shear 
interaction fit the experimental data better.

Error in experimental data
The authors acknowledge the error that occurred 

while collecting the experimental data of Mattock and 
Wang’s31 beam test. First, the area of compression 
reinforcement, which was indicated as 1570 mm2 in 
the paper, should be 157 mm2. A second error was noted 
where the results from five symmetrically reinforced beams 
were not shown in the results. The recalculations that the 
discusser presented in Table 12 are correct. This made the 
comparison between the results of shear-bending interaction 
formula and bending-shear-axial compression different from 
the results shown in the paper. The discusser recalculated the 
comparison result using the correct experimental data. From 
the discusser’s Table 11, the mean of comparison result is 
1.49, and the coefficient of variation is 7.9%. The average 
value of the comparison result is higher than 1, which means 
that Eq. (24) is conservative. The coefficient of variation 
is also very small, indicating Eq. (24) can reflect the rule 
of the bending-shear interaction. Herein, the authors also 
compared Gupta and Collins’ experimental test data40 with 

Fig. 10—Bending-shear interaction curve.
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Eq. (24) with a mean and coefficient of variation of 1.15 ± 
16.5%, indicating Eq. (24) is reasonable to express bending-
shear interaction.

The same question was posed by the discusser in the 
bending-shear-axial compression part. The mean of Eq. (29) 
will be 1.46 according to discusser’s calculation, indicating 
that Eq. (29) is also conservative. The objective of the paper 
is to propose the equation form of the unified interaction 
formula model, and the parameters in the unified formula 
could be adjusted by more experimental data to fit the test 
data and reflect the interaction rule well. Further research 
should be conducted to compare more experimental data 
with the unified formula and make this formula more accu-
rate and reasonable.

It is very difficult to find test components that are subjected 
to combined bending, shear, torsion, and axial compres-
sion. The authors considered all the Zhao’s test beams to 
be symmetrically reinforced. If only the four symmetrically 
reinforced components in Table 7 are used, the mean of 
comparison result is 1.60 and the coefficient of variation is 
4.2%. This means Eq. (35) is a little conservative but could 
reflect the interaction of bending, shear, torsion, and axial 
compression.
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