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Abstract:   The paper presents the development of an adaptable strut-and-tie model that can be 

applied to the design or analysis of four-pile caps that support axial compression and biaxial 

flexure from a supported rectangular column. Due to an absence of relevant test data, the model 

is validated using non-linear finite element analyses (NLFEA). The results indicate that the use 

of the proposed model would lead to safe and economical designs. The proposed model can be 

easily extended to any number of piles, providing a rational procedure for the design of wide 

range of pile caps. 
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1. INTRODUCTION 

In traditional design practice, pile caps are assumed to acts as beams spanning between 

piles. The depth of a cap is then selected to provide adequate shear capacity and the required 

amount of longitudinal reinforcement is calculated using engineering beam theory. Quite recently, 

methods for the design of pile cap have been developed that are based on the strut-and-tie 

approach. These include the methods in the Canadian CSA Code (1984), by Schlaich et al. 

(1987), in the AASHTO LRFD code (1994), in the Spanish concrete code EHE (1999), by 

Reineck (2002), and in the American ACI318 building code (2002). These methods assume that 

an internal load resisting truss, so-called strut-and-tie model, carries the forces through the pile 

cap in which concrete compressive struts act between the column and piles and steel ties 

(reinforcement) act between piles.  

Results of elastic analyses, as example that one obtained by Iyer & Sam (1992), 

illustrate that there is a complex state of straining in these three-dimensional pile caps and that 

the Strut-and-Tie Theory provides a rational basis for design. Adebar et al. (1990), Adebar & 

Zhou (1996), Bloodworth et al (2003) and Caves & Fenton (2004) have provided experimental 

evidence demonstrating that the use of sectional approaches based on engineering beam theory 

are not appropriate for the design of pile caps. As further illustrated in the research conducted by 

Blévot & Fremy (1967), Clarke (1972), Suzuki et al (1998, 1999, 2000) and Suzuki & Otsuki 

(2002), many pile caps designed to fail in flexure by engineering beam theory have been reported 

to fail in shear. This is highly undesirable behavior as there is neither warning cracks nor 

pronounced deformations before these types of brittle shear failures occur. 

These unexpected shear failures can be explained in two ways. Firstly, engineering 

beam theory was originally developed for structural elements with significant deformation 
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capacity. As a consequence, if this theory is applied to elements with limited deformation 

capacity such as pile caps, the calculated effective depth will tend to overestimate the concrete 

contribution from shear. Secondly, engineering beam theory usually leads to more longitudinal 

reinforcement than would be calculated by using a strut-and-tie approach, and for the specific 

situation of four-pile caps, Clarke (1972) concluded that this difference can be higher than 20%. 

Consequently, pile caps designed using engineering beam theory have a tendency to be over 

reinforced and as consequence, shear failures may occur as a result of longitudinal splitting of 

compression struts before yielding of the longitudinal reinforcement.  

Although the strut-and-tie approach provides a more rational basis for the design of 

pile caps, it is only commonly applied for the design of simple pile caps such as pile caps 

supporting square columns subjected to axial load. This is believed to be due to the complexity 

and uncertainties as to the appropriate strut-and-tie model to use for more complex loading 

conditions. Thus, designers have chosen to rely on the use of engineering beam theory for the 

design of even slightly more complex pile caps, including four-pile caps that support axial 

compression and biaxial flexure from a single rectangular column.   

To address the situation of pile caps supporting columns under general situation (axial 

compression and biaxial flexure), an adaptable strut-and-tie model for four-pile caps is proposed 

in this paper. Unfortunately there is no experimental test data on the performance of this type of 

four-pile caps. Thus, non-linear finite element analysis (NLFEA) has been applied to make the 

best possible prediction of the behavior of these pile caps. A NLFEA program was selected for 

use that was specifically written for predicting the behavior of a three-dimensional continuum of 

structural concrete subjected to a complex state of stress. This program will be validated herein 

by available test data. The result of the analyses of four-pile caps supporting axial compression 
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and biaxial flexure from a single column will illustrate the appropriateness of the proposed 

model. This model can be further extended for the design of more complex pile caps.  

 

2. AN ADAPTABLE STRUT-AND-TIE MODEL TO THE DESIGN O F FOUR-PILE CAPS  

The proposed model is an adaptable 3-dimensional strut-and-tie model, which can be 

used for the design or analysis of four-pile caps supporting square or rectangular columns 

subjected to the generic loading conditions of axial compression load and biaxial flexure. This 

model is presented in Fig. 1. In the proposed model, axial compression forces are taken as 

negative, tensile forces are taken as positive, and the net axial load acting from the column on the 

pile cap is always compressive.  

 
 

 
 

Fig. 1 – Proposed strut-and-tie model for four-pile caps and positive signal convention for biaxial flexure 
 

The axial compression and biaxial flexure acting on the square or rectangular columns 

can be statically substituted by a single compressive axial load, which has the nominal 

eccentricities presented in Eqs. (1) and (2): 
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Nominal reactions of the piles are calculated using Eqs. (3) to (6), and in order to keep 

the validity of the proposed model, no tensile piles are permitted in the present formulation: 
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In order to calculate the angles between the idealized struts and ties, it is first necessary 

to calculate the projections of struts on the horizontal plane, as show in Eqs. (7) to (10):  

2
ky,

2
kx,A )e(0.5e)e(0.5eL −++= …………………………………………………………...(7)       

2
ky,

2
kx,B )e(0.5e)e(0.5eL −+−= ……………….…………………………………………...(8) 

2
ky,

2
kx,C )e(0.5e)e(0.5eL +++= ……………….…………………………………………...(9)     

2
ky,

2
kx,D )e(0.5e)e(0.5eL ++−= …………… …………………………………………….(10) 

The angles between struts and ties can are calculated by Eqs. (11) to (18), as follows: 
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Nominal axial forces acting in concrete struts are calculated using Eqs. (19) to (22) 

while nominal axial forces acting on steel ties are determined using Eqs. (23) to (26), as follows: 
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0sincosCcoscosCT DDkD,BBkB,kBD, ≥−=−= βθβθ ...………………………………………….(26) 

Once the nominal forces acting in ties are known, the amount of reinforcement for 

each tie can be calculated by applying the necessary safety factors and taking into account the 

yielding of the reinforcement, as show in Eqs. (27) to (30): 
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Equations (27) to (30) give the minimum required amount of concentrated 

reinforcement for each tie. If biaxial moment is acting on the column, the amount of 

reinforcement is expected to be different for the ties. Taking in account the possibility of 

inaccurate positioning of these different reinforcements in the field, the largest calculated tie 

reinforcement in each direction may be provided for both ties in that direction, as shown in Eqs. 

(31) and (32): 
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Finally, in order to avoid a shear failure, herein represented by a longitudinal splitting 

of the compressive struts, the maximum compressive stress acting on the column should be 
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limited to a certain portion of the concrete compressive strength. This additional verification can 

be made by evaluating the highest compressive stress (σmax) acting in the corners of the column, 

as shown in Eq. (33). The stresses acting in the corners of the columns can be calculated by using 

Eqs. (34) to (37). 
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 Once the maximum stress acting on the column is found, this value is checked against 

the maximum permissible stress, proposed in order to avoid the possibility of longitudinal 

splitting before reinforcement yielding. The additional recommended verification is proposed in 

Eq. (38) and the maximum admissible pressure for the column, based on the factor λ, is 

discussed latter. 

climmax fσ λσ =≤ ……………………...…...………………………………………………….(38) 

 

3. APPLICATION OF NLFEA TO AVAILABLE EXPERIMENTAL D ATA OF PILE CAPS 

Prior to the use of a NLFEA program for evaluating this adaptable strut-and-tie model, 

it is first necessary to evaluate the ability of this program to predict the behavior of tested pile 
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caps. This was completed using the experimental data from four-pile caps tested by Suzuki et al 

(1998). Table 1 presents the dimensions of these pile caps as well as the measured cracking, 

yielding, and ultimate strengths.  

Table 1 – Properties and average results of the four-pile caps tested by Suzuki et al (1998) 

Specimen Layout 
L 

(m) 
d 

(m) 
e 

(m) 
a=b 
(m) 

fc 

(MPa) 
fy 

(MPa) 
Asx 

Asy 
|Ncrack| 
(kN) 

|Nyield| 
(kN) 

|Nmax| 
(kN) 

BP-20-30-1,2 Grid 0,8 0,15 0,50 0,30 29,45 413 6φ10 mm 215,50 475,00 482,50 
BPC-20-30-1,2 Bunched 0,8 0,15 0,50 0,30 29,80 413 6φ10 mm 230,00 490,00 497,50 
BP-30-25-1,2 Grid 0,8 0,25 0,50 0,30 28,60 413 8φ10 mm 377,50 784,00 759,50 

BPC-30-25-1,2 Bunched 0,8 0,25 0,50 0,30 29,15 413 8φ10 mm 363,00 833,00 862,50 
BP-30-30-1,2 Grid 0,8 0,25 0,50 0,25 27,90 413 8φ10 mm 441,00 907,00 911,50 

BPC-30-30-1,2 Bunched 0,8 0,25 0,50 0,25 29,90 413 8φ10 mm 411,50 1029,00 1034,00 

 

For modeling the concrete behavior, a fracture-plastic model based on the classical 

orthotropic smeared crack formulation (CC3NonLinCementitious2) implemented by Cervenka et 

al (2005) was applied. Reinforcements were modeled using an embedded formulation and the 

Newton-Raphson solution method was applied for the solution scheme. Boundary conditions and 

material properties were defined in order to accurately represent the described experimental 

setup and the overall response was recorded using monitoring points for loading (at the top of the 

column) and displacements (at the center bottom of the pile caps) 

Fig. 2 presents the predicted load-displacement behavior for the simulated four-pile 

caps using NLFEA. Table 2 presents in details some comparisons between the experimental 

results obtained by Suzuki et al (1998) and the numeric predictions from the NLFEAs. The non-

linear predictions were reasonably close to the measured experimental results, leading to 

coefficients of variations that were less than 15%.  
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Fig. 2 – Numerical load-displacement behavior obtained for the four-pile caps tested by Suzuki et al (1998) 

 

Table 2 – Comparison between experimental data obtained by Suzuki et al (1998) and numerical predictions 
Cracking Loads (kN) Yielding Loads (kN) Maximum Loads (kN) Specimen 

|Nexp| 
(1) 

|Nnum| 
(2) 

|Nexp|/|Nnum| 
(3) 

|Nexp| 
(4) 

|Nnum| 
(5) 

|Nexp|/|Nnum| 
(6) 

|Nexp| 
(7) 

|Nnum| 
(8) 

|Nexp|/|Nnum| 
(9) 

BP-20-30-1,2 215,50 243,40 0,89 475,00 381,90 1,24 482,50 440,60 1,10 
BPC-20-30-1,2 230,00 195,30 1,18 490,00 312,00 1,57 497,50 379,60 1,31 
BP-30-25-1,2 377,50 380,10 0,99 784,00 654,60 1,20 759,50 690,00 1,10 

BPC-30-25-1,2 363,00 382,30 0,95 833,00 709,40 1,17 862,50 799,20 1,08 
BP-30-30-1,2 441,00 437,30 1,01 907,00 780,30 1,16 911,50 839,70 1,09 

BPC-30-30-1,2 411,50 465,20 0,88 1029,00 835,50 1,23 1034,00 951,90 1,09 
  Mean 0,98  Mean 1,26  Mean 1,13 
  S.D. 0,11  S.D. 0,15  S.D. 0,09 
  C.V. 0,11  C.V. 0,12  C.V. 0,08 

 

While calculated displacements were generally lower than experimental displacements, 

the cracking patterns and failure modes were quite well predicted. Fig. 3 presents the typical 

radial crack pattern predicted for four-pile caps with bunched reinforcement, which is a very 

similar pattern to that observed by Suzuki et al (1998). 
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Fig.3 – Predicted crack pattern at failure for pile cap BPC-30-30-1,2 (only crack widths over 0,2 mm) 

 

4. VALIDATION OF THE PROPOSED STRUT-AND-TIE MODEL U SING NLFEA 

Based on the accurate quantitative as well as qualitative performance obtained in the 

previous simulations, the necessary confidence in this NLFEA program was obtained for reliably 

predicting the behavior of four-pile caps designed with the proposed methodology. For these 

additional investigations, four-pile caps subjected to the same loading conditions and different 

heights (0.38≤ c/d ≤ 0.70), as shown in Fig. 4, were designed using the proposed model and 

further analyzed using the nonlinear potentialities of DIANA software (Cervenka et al (2000)).  

In order to evaluate the performance of the proposed model, the amount of 

reinforcement were obtained by setting load factors and material reduction factors to 1.0. The 

same methodology of not applying safety factor was used when defining material properties in 

the selected commercial finite element software, i.e., characteristics strength for steel and 

concrete were defined. 
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Fig. 4 – Four-pile caps designed using the proposed methodology and analyzed using NLFEA 

 

The NLFEA differs from what was done for the model validation in that eccentric 

displacements were applied at the top of the column rather than a constant displacement applied 

in the centroid of the column. The constant eccentricities of the load condition were defined as  

ex = 0.046 m and ey = 0.092 m, obtained as a result of the division of the biaxial flexure loads 

(Mx,k = -57,1 kN.m and My,k = 28,6 kN.m) by the compressive axial load (Nk = - 621 kN).  

Fig. 5 presents the load-displacement behavior obtained by using monitoring points at 

the top of the columns and at the middle bottom of the pile caps. As can be seen, all designed pile 

caps using the proposed methodology present a maximum eccentric load at fixed eccentricities 

higher than the nominal eccentric load used for the design of the longitudinal reinforcements. 

Table 3 presents the primary results obtained for the designed pile caps including the 

predicted cracking, yielding and maximum eccentric loads. This table also presents the angle of 

the initial struts obtained using the proposed model as well as the calculated maximum stresses 

acting in the column, by application of the Eqs (33) to (37) using the numerically predicted 
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Fig. 5 – Load-displacement behavior for the four-pile caps designed using the proposed methodology 

 

Table 3 – Numerical results of the four-pile caps designed using the proposed model 
 

Specimen c/d 
h 

(m) 
d 

(cm) 
Struts  
Angles 

Ncrack 

(kN) 
Nyield 

(kN) 
Nmax 
(kN) 

σσσσc,c 
(MPa) 

σσσσc,y 
(MPa) 

σσσσc,u 
(MPa) 

Failure 
Mode 

A 0,70 0,30 0,25 

θA = 26,23o 
θB = 29,95o 
θC = 21,68o 
θD = 23,64o 

287,40 - 669,50 0,48fc - 1,11fc Shear 

B 0,53 0,40 0,35 

θA = 34,60o 
θB = 38,89o 
θC = 29,10o 
θD = 31,50o 

514,40 785,30 894,10 0,85fc 1,30fc 1,48fc Flexure 

C 0,42 0,50 0,45 

θA = 41,57o 
θB = 46,04o 
θC = 35,59o 
θD = 38,23o 

702,60 795,00 943,20 1,16fc 1,32fc 1,56fc Flexure 

D 0,38 0,55 0,50 

θA = 44,58o 
θB = 49,04o 
θC = 38,49o 
θD = 41,20o 

896,10 - 1044,00 1,48fc - 1,73fc Shear 
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Typical failure cracks for the designed four-pile caps supporting a rectangular column 

subjected to biaxial flexure and compression load are shown in Fig. 6. Typical deformed shapes 

at maximum load, as well as, the principal stress acting in the ties are shown in Fig. 7 for 

Specimen C. 

 

Fig.6 – Crack pattern at maximum load for the Specimen C (only crack widths over 0,1 mm) 

   

Fig.7 – Deformed shape at maximum eccentric load and stress in the reinforcements ties for the Specimen C  
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In order to assess the concrete contribution on the capacity of the pile caps, additional 

analyses were conducted of unreinforced pile caps. Fig. 8 present the eccentric load-

displacement behavior of non-reinforced pile caps of different heights. As can be seen, for pile 

caps with heights over 50 cm, no longitudinal reinforcement would be necessary to support the 

design loads. These results show that concrete tensile strength, often neglected in structural 

codes, is a critically important factor in the design of stocky member such as pile caps. Taking 

into account that safety factors are additionally applied to the design, it is very clear that a large 

portion of some pile caps will be reinforced.  
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Fig.8 – Load-displacement behavior for the four-pile caps without adopting longitudinal reinforcement 

 

5. CONCLUDING REMARKS 

Due to the lack of a generic strut-and-tie model for the design of pile caps to support 

realistically complex loadings from columns, designers commonly use engineering beam theory 

or very simplified strut-and-tie models for the design of pile caps. In the latter approach, 
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knowing the piles reactions due to the simultaneous action of biaxial flexure and axial 

compression, the highest reaction is multiplied by the number of piles, in a manner that an 

equivalent compressive axial load is found. This equivalent load is then used for the design of the 

pile cap, by using the available strut-and-tie models developed for pile caps supporting square 

columns under the basic situation of axial compression. 

To encourage the use of more appropriate design procedures for pile caps, an adaptable 

3-dimensional strut-and-tie model was presented in this paper. The main strength of the proposed 

model is that it provides a clear methodology for calculating the design forces and capacity of 

four-pile caps supporting columns subjected to axial compressive load and biaxial flexure. The 

proposed methodology is shown by analyses to result in safe and economical design solutions.  

The performance of the proposed model was evaluated using non-linear analyses. The 

results show that the predicted capacities are greater than those calculated from the adaptable 

strut-and-tie model. As was presented in Fig. 5, the lower the shear span-to-depth ratio, c/d, the 

higher was the failure load. However, as the same strut-and-tie model was applied for the same 

loading condition, the same capacity at reinforcement yielding and at failure would have been 

expected for all specimens. The differences in the predicted behavior can be explained by the 

significant influence of the concrete tensile strength in the bottom region of the pile caps, which 

is not considered in the present formulation and in most codes of practice.  

In order to obtain ductile behavior at the ultimate state, two conditions should be 

considered in the use of the presented model. Firstly, based on the results shown in Table 3, a 

maximum compressive stress for the column under 1,0fc as proposed by Adebar et al (1990), 

helps to ensure a safe design and can be introduced in the present formulation by adopting      

λ = 1,0 in Eq. (38). Secondly, a minimum angle for the struts should be provided in order to 
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increase the final shear strength of the pile caps. Numerical results showed that yielding were 

only possible when the inclination of the struts were between 29o and 46o. If the design intention 

is to yield the reinforcement (flexure failure) before longitudinal splitting of the concrete struts 

(shear failure), then the two previous recommendations should be followed. 

The proposed adaptable strut-and-tie model is considered to provide a more rational 

basis for the design and analysis of four-pile caps. Even so, it should be noted that the proposed 

model may lead to the use of more than necessary amounts of longitudinal tension reinforcement. 

The numerical simulations illustrated the capacity provided by the concrete alone would support 

most service loads. This implies that field experience should not provide a good indication of the 

appropriateness of design practice.  
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NOTATION 

Nk = Nominal axial loading acting on the column; 

Mx,k; My,k = Nominal flexure loading acting from the column on the pile cap about the x and y-axes; 

ex,k; ey,k = Nominal eccentricities of the load from the x and y-axes; 

a, b = Column dimensions; 
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RA,k; RB,k; RC,k; RD,k = Nominal pile reactions for piles A, B, C and D, respectively; 

θA = Angle between projection LA and Strut A; 

θB = Angle between projection LB and Strut B; 

θC = Angle between projection LC and Strut C; 

θD = Angle between projection LD and Strut D; 

βA = Angle between projection LA and Tie AC; 

βB = Angle between projection LB and Tie BD; 

βC = Angle between projection LC and Tie CD; 

βD = Angle between projection LD and Tie CD; 

LA, LB, LC, LD = Horizontal projections of the struts A, B, C and D, respectively; 

e = Pitch between center of piles;  

c = Average distance between face column and pile centers; 

c1, c2 = Distance between face columns and pile center in x and y-directions, respectively;  

c/d = Shear span-to-depth ratio; 

L = Pile cap length and width;  

h = Pile cap height;   

d = Effective height;  

p = pile diameter or width; 

CA,k; CB,k; CC,k; CD,k = Nominal forces acting in the struts A, B, C and D, respectively; 

TAC,k; TBD,k; TCD,k; TAB,k = Nominal forces acting in the ties AC, BD, CD and AB, respectively; 

γ, φ = Safety factor for loads and strength reduction factor for materials, respectively; 

AsAC, As,BD, As,CD, As,AB = Demanded reinforcement for ties AC, BD, CD and AB, respectively; 

σ1,c; σ2,c; σ3,c; σ4,c; = Stresses acting at the corners of the column; 

σmax = Maximum compressive stress acting at the corners of the column; 

σc,c; σc,y; σc,u = Maximum compressive stress at the corners of column for the crack, yield and ultimate 

(maximum) loads; 

fc = Concrete compression strength;  
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fy = Steel yielding strength. 
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