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Adaptable Strut-and-Tie Model for Design and Verification of Four-Pile Caps. Paper by Rafael Souza, Daniel

Kuchma, JungWoong Park, and Tulio Bittencourt

Discussion by Andor Windisch
ACI member, PhD, Karlsfeld, Germany

Referring to the problems at the application of the
sectional approach, the authors propose strut-and-tie models
to predict the behavior of four-pile caps. A reasonable doubt
is that the sectional approach “exaggerates the importance of
the effective depth for calculation shear strength.” It is true
that in D-regions, the inner lever arm is less than in B-regions.
Nearly all specimens of the numerous test programs, even if
their failures were proclaimed as by shear, were preceded by
the yielding of longitudinal reinforcement, that is, were caused
by poor bending capacity. Nevertheless, during the entire
paper, the authors make use of d, the “effective depth” of pile
caps, which is really not effective in a D-region. Accordingly,
the shear span-depth ratios, the mechanical reinforcement
ratios, and the normalized shear stresses, as defined and used
in Fig. 1 to 3, yield misleading interdependencies.

STRUT-AND-TIE MODEL TO PREDICT
BEHAVIOR OF FOUR-PILE CAPS
The strut-and-tie model (STM) shown in Fig. 4 raises the
following questions/concerns:

e As mentioned previously, the real effective depth
differs from the geometrical defined depth d. (In their
concluding remarks, the authors refer correctly to the
unknown position of the nodal zone underneath the
column, but give no guidance.)

e For what reasons were no bottle-shaped compression
struts chosen?

e The ties of the proposed STM do not fulfil the requirement
of the minimum internal work: ties along the diagonals
A-D and B-C would yield less energy. Moreover,
especially if the pile cap has a cuboid geometry, the
first cracks develop in the center of the cap, just under
the column, hence the reinforcing bars positioned along
the diagonals would most efficiently control the
behavior of the cap.

e The same diagonal reinforcement layout must be
proposed when the pile-cap is turned upside down: the
four piles load the column at the corners of a bracket-
like plate. This interpretation makes the punching
failure found by Blevét and Frémy14 understandable.

Due to the aforementioned problem with the “effective
depth,” both fundamental equations (Eq. (2) and (4)) are
questionable. The parameter ¢, in Eq. (5) may refer to,

among others, the ratio of real effective depth to depth d.

Being in a D-region, the expression for the axial load to produce
the first cracks given by Eq. (11) is questionable, too.

CONCLUDING REMARKS
For the design of pile caps, both the sectional design
method and the strut-and-tie-method could be applied and
both have the same Achilles’ heel (as correctly remarked by
the authors): to find the real effective depth. This immediately
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solves the problem with the “complex and nonlinear strain

distribution throughout the pile cap.” Pile caps, similar to

short brackets or deep beams, never fail in shear. The STM
describes it with the direct compression struts’ flow. The
sectional design on the other side does not need to take care
of the shear problem. As the authors properly state, the
so-called shear failures occurred after yielding of the
longitudinal reinforcement. This means weak flexural
reinforcement. At STM, the inclination of the inclined
compression strut defines the amount of the necessary
flexural reinforcement. This is hidden behind the
recommendation given by the authors: “to prevent this sort
of failure, a compressive stress under 1.0f. and a relation
shear span-depth ratio under 1.0 normally can lead to ductile
failures.” The conclusion of Nori and Tharval?® must be
agreed upon: any reduction of the amount of longitudinal
reinforcement results in a brittle failure of the pile cap.

The authors are correct in the following:

e It is difficult to generalize the fact that strut-and-tie is
more economical.

*  The tensile contribution of the concrete is underestimated
by the application of either the sectional design
methods or the strut-and-tie design provisions for very
stocky pile caps.

e Improved models are needed that can account for
compatibility and tensile contributions of concrete
materials.

Comparative tests are needed with diagonally reinforced
pile caps.

AUTHORS’ CLOSURE

The authors would like to thank the discusser for his
interest in the paper, for his positive comments, and for
providing the authors the opportunity to clarify some issues
of the paper.

Initially, the authors agree with the discusser that using the
effective depth for calculating shear strength of pile caps can
lead to unrealistic results, mainly when using a sectional
approach. This fact was inclusively confirmed by experimental
results obtained by one of the author’s references.

On the other hand, the discusser has mentioned that the
authors have used the same effective depth to develop a
strut-and-tie model for four-pile caps and it raises some
doubts regarding the validity of the model. Also, the
discusser points out that the inner level arm in a D-region
will be less than the one realized in a B-region.

In the authors’ opinion, it is not possible to generalize the
fact that the effective depth in a D-region will be less than in
a B-region, as these regions have totally different behaviors.
In the case of pile caps, for example, one may find the same
internal level arm between horizontal compressive struts
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(top of the pile cap) and tension steel ties (bottom of the pile
cap), using the sectional approach (B-region) or a strut-and-
tie model (D-region).

Some design codes permit the use of the sectional
approach for design pile-caps. In fact, there is no major
problem when designing the reinforcement using this
method as it normally leads to differences of approximately
20% regarding a strut-and-tie model. The sectional
approach, however, is not adequate for previewing the shear
behavior of stocky pile caps (span-depth ratio of less than 2,
in general) once it is deeply related to the effective depth. If
the effective depth is increased, the expected shear loads will
be higher; it is not true for a D-region designed using the
sectional approach.

For a D-region, when the depth of the pile cap is increased,
the diagonal struts will tend to pass from a situation of prismatic
struts to bottled-shaped struts, which is a form of strength
penalty, as compressive bottled-shaped struts are subjected
to splitting. In fact, the authors have used the effective depth
in their proposal; however, the increase in this value is
subject to a penalty through Eq. (7) through (9).

Regarding the position of the nodal zone underneath the
column, the authors believe it is really a value of high uncertainty.
This position, however, may be estimated based on the
recommendation of Paulay and Priestley.31 In their opinion,
the effective depth of the horizontal strut underneath the
column may be taken as h/4, where & is the total height of the
pile cap.

The authors are working on new and more complete
models'? (refer to Fig. 5) where the position of the nodal
zone underneath the column, the diagonal bottled-shape
struts, compatibility equations, and compression softening
effects are considered. The discusser may find further
clarification in the referred paper.

Regarding the position of the ties, the authors agree with
the discusser that the proposed layout in the strut-and-tie
model will require more reinforcement than a situation of
diagonal positioning of the reinforcement. However, one
should remember that the proposed model attempts to
predict the behavior of some data collected from experi-
mental research. In the majority of these tests, and even in
practical and real situations, the proposed layout is preferred.
Also, a minimum grid of reinforcement is usually distributed
in the bottom of pile caps to prevent premature cracks that
may develop in the center of the cap.

The authors agree with the discusser that diagonally
reinforced pile caps should be tested. The number of tests
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Fig. 5—Strut-and-tie model for four-pile caps proposed by
Park et al.’3

available to effectively describe the behavior of pile caps is
very small. Besides that, the available results do not
represent the reality of what the pile caps are usually
subjected to in construction. The majority of the collected
data refers to four-pile caps supporting square columns
subjected to axial force. In fact, in most situations, pile caps
tend to support rectangular columns subject to axial load and
biaxial flexure. New models taking into account this reality
need to be developed to adequately address the economy and
safety aspects of pile caps.

Finally, the authors recommend the use of the strut-and-tie
model for pile caps with span-depth ratios of less than 2. The
sectional approach may yield better results for pile caps with
large span-depth ratios, that is, span-depth ratios greater than 2.

REFERENCES
31. Paulay, T., and Priestley, M. J. N., Seismic Design of Reinforced
Concrete and Masonry Buildings, second edition, John Wiley and Sons,
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Disc. 106-S17/From the March-April 2009 AC/ Structural Journal, p. 160

Two-Way Shear Strength of Slab-Column Connections: Reexamination of ACI 318 Provisions. Paper by

Widianto, Oguzhan Bayrak, and James O. Jirsa

Discussion by John Gardner

Professor Emeritus, University of Ottawa, Ottawa, ON, Canada

The authors have given an excellent description of the
historical development of the punching shear provisions of
ACI 318. However, the section on previous research on two-
way shear resistance of slabs refers to only 16 of the references
listed. Additional references worth review include Kinnunen
and Nylander,65 Shehata and Regan,66 Shehata,67
Gardner,68 Alexander,69 Silfwerbrand and Hasssanzadeh,70
and Sundquist.71 The addition of the authors’ tests results to
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the literature is welcomed; however, the punching shear
capacities for the two slabs reported, G0.5 and G1.0, are
lower than the discusser would expect.

Comparison of code provisions with experimental results
is not straightforward because the code provisions were
designed to be conservative, use specified or characteristic
concrete strength and not the mean strength reported for the
experimental studies, and sometimes include hidden factors
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in the equation coefficients. Code prediction equations
should be capable of direct verification against experlmental
results. The larger shear openmeters of BS8110-97,%* DIN
1045-13! and Eurocode 2% are advantageous for concentric
punching shear but create difficulties in interpretation for
edge and corner slab-column connections.

Prior to 1984, the punching shear provisions of CSA A23.3
were similar to those of ACI 318. CSA A23.3-84M’!
replaced the ACI behavior factor ¢ with material partial
safety factors ¢, = 0.6 and @, = 0.85, and changed the load
factors to 1.25D + 1.5L. To maintain the same level of safety
as the previous code, the coefficients in the punching shear
expressions were increased by 21% (CSA A23.3.84M,
Clause B3(b)). CSA A23.3- 042 increased the concrete
material factor ¢, to 0.65 and reduced the equation
coefficients by 5%. Changing the equation coefficients is
poor practice, as setting @, = ¢, = 1 in the strength capacity
equation should give the 95% lower bound of a population of
test/predicted results

BS8110-97,%* CEB M(C90,> DIN 1045-1,°" and
Eurocode 292 use material factors ¢ > 1in the denomlnator,
whereas ACI and CSA use ¢ < 1 in the numerator. DIN 1045-1
does not state explicitly that the material understrength factor yL
1.5 is included in the equation coefficients, but Hegger et al.’
wrote the equation coefficient as 0.21/y... The punching shear
capacities, calculated using mean concrete strength, the
revised coefficient, and ¢ =y, =y,, = 1, are given in Table 4.
Using specified, or characteristic, concrete strength would
reduce the calculated capacities.

The conclusion that DIN 1045-01°! is conservative is
incorrect—none of the code expressions are conservative.
However, as stated previously, the punching shear capacities
for the two slabs reported, G0.5 and G1.0, are lower than the
discusser would expect.

The conclusions based on experimental research at the
University of Texas at Austin are too broad considering that
only two slabs were tested. However, Fig. 3 of Reference 68
shows that the ACI 318 punching shear equations are not
conservative for reinforcing ratios less than 0.7%.
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Table 4—Calculated punching shear capacities
for Widianto slabs (calculated using mean
concrete strength)

Expt., ACIL BS |EC2,%?| DIN j

kips | 318-05," |8110-97,%*| kips |1045-1,'| Gardner,®’!
Code | (kN) | kips (kN) | kips (kN) | (kN) |kips (kN)| kips (kN)
Slab | 69.9 112.6 86.1 93.5 75.3
G05 | (3109)| (501 (383) | @16) |2 @B (335
Slab | 90.2 106.5 1046 | 1135 | 116.0 91.2
G1.0 |(401.2)| (474) 454) | (505) | (516) (406)

*Square perimeter used.
TSteel yield strength taken as 70 ksi (480 MPa).

AUTHORS’ CLOSURE

The authors would like to thank the discusser for his
interest and comments. As implied by the title of the paper,
the focus was on ACI 318 provisions. This focus was stated
in the Research significance section, detailed in the main
body of the paper and reiterated in the Conclusions section.
The objective of the paper was neither to examine nor to
report on all design codes, all analytical formulas, and/or all
test results ever published.

The low shear strength values recorded in the authors’
tests should not be too surprising, considering the fact that
there are man% test results reported in the
literature ! 430-31.33:37.39 that are approximately the same as
those for Specimens G0.5 and G1.0. Even though the focus
of the paper was on ACI 318 provisions, the authors
presented different code provisions only to illustrate “the
diverging approaches used for the code equations” and the
fact that mechanics of punching shear failure have not been
well understood. By these illustrations, the authors wanted
to convey the message that reexamination of the ACI 318
provision for two-way shear strength (which has not
changed since 1963) is warranted.

The discusser indicated that “DIN 1045-1 does not state
explicitly that the material understrength factor y. = 1.5 is
included in the equation coefficients, but Hegger et al. 3
wrote the equation coefficient as 0.21/y...” The authors have
presented the equations that were taken d1rect1y from DIN
1045-1°" in Table 2. Similar to DIN 1045-1,°! the authors
also used the equatlons as they appear in the BS 8110- 9764
and Eurocode 2.2 The comparative evaluation of various
code provisions and experimental results is not straightfor-
ward and was highlighted in the section titled “Building
code provisions: comparison’”:

The shear strength varies from about 480 kN using
German Code DIN 1045-1*% to over 1100 kN
using Canadian Standards CSA A23.3-04% for
slabs with a 0.5% flexural reinforcement ratio.
Some of these differences may be reduced if load
or understrength factors are included. However,
the variations indicate the diverging approaches
used for the code equations.

The statement made regarding DIN 1045-1°" seems to
have been misinterpreted. The reported conclusions are only
related to the two specimens tested at the University of
Texas at Austin. It is explicitly stated in the Conclusions
section of the orlglnal paper that: “Unlike other building
codes, DIN 1045-1°! provided a 20% conservative estimate
of the capacity for the connection tested” for Specimen GO0.5
and “The capacity of Specimen G1.0 (which represents a
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slab-column connection in typical flat-plate structures built
to meet current standards) was also overestimated (between
9 and 36%) by all but DIN 1045-1.>! It should also be noted
that the Conclusions contained the following statement:
“Based on the results of experimental research conducted at
the University of Texas at Austin, the following observations
can be made.” Certainly, strength estimates may change if
load or understrength factors are included.

Finally, it is stated in the “Recommendations” section of
the original paper that, “The overwhelming evidence
gathered from the literature'*37-39-44 and obtained in the
experimental program1 illustrates that the use of ACI 318
provisions for lightly-reinforced slab-column connections is
questionable.” The conclusions presented were based on
experimental research at the University of Texas at Austin
and test results reported in the literature.

Disc. 106-S18/From the March-April 2009 ACI Structural Journal, p. 171

Behavior of High-Performance Steel as Shear Reinforcement for Concrete Beams. Paper by Matthew S.

Sumpter, Sami H. Rizkalla, and Paul Zia

Discussion by Andor Windisch
ACI member, PhD, Karlsfeld, Germany

In the introduction, the authors correctly point out that
using high-performance steel in comparison with
conventional steel could potentially relieve congestion in
future structures. Nevertheless, it is odd that, for the nine
reinforced beams, the same cross-sectional areas for
longitudinal and shear reinforcement were applied without
depending on the strength of the steel. This means that even
the flexural beams’ test results cannot be accurately
compared to each other, as the tensile forces and the concrete
compression zones are completely different. Choosing the same
cross-sectional area for the longitudinal MMFX bars, the authors
want to keep the effect of dowel action constant. This is
a questionable decision for two reasons:

1. The purpose of using high-strength steel is to reduce bar
diameters.

2. The dowel action is not considered at all, neither in the
codes nor in the analytical modeling.

Similar problems arise with regard to the transverse
reinforcement: the same spacing of the identical diameter
reinforcing bar having very different yield strengths results
in substantially different test beams. Hence, any behavior
characteristics of, for example, Beams C-C-6, C-M-6, and
M-M-6 test cannot be compared with each other.

Another curiosity is the application of the high-strength
steel in the compression zone: the strain compatibility
between concrete and high-strength steel and, hence, the
applicability of MMFX as compressive reinforcement, is
more than questionable.

TEST RESULTS

It is a pity that for each type of behavior, the test results of
only one set are shown. Thus, no detailed perception of the
varied characteristics is possible for the reader.

Due to the disputable substitution of ordinary steel through
high-strength steel, as mentioned previously, the sets of test
beams and the percents of increase, as shown in Table 1, are
not meaningful. Nevertheless, the values in the column
“Percent total increase,” reveal no tendency and could yield
the conclusion that the substitution as proposed by the
authors is not sensible.

Another possibility for formation of groups and evaluation
can be made based on the ratios of yield strengths and the
spacings of transverse steel. Taking into account the two
yield strengths of 97 and 120 ksi (669 and 827 MPa) assessed
for the MMFX steel and comparing it to the yield strength of
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the Grade 60 steel (62 ksi [427 MPa]), two strength ratios
can be determined

07 _ 690 _ g

690 _ e 120 827,
62 427

62 427

Considering the spacings of the transverse steel, the
ratios 6/4 ~ 1.5 (hence X-C-4 ~ X-M-6) and 6 / 3 = 2
(hence X-C-3 = X-M-6) can be found. Accordingly, the
following sets of beams for comparison can be compiled:

e Ratio of shear reinforcement ~ 2 — Set A: C-C-3, C-M-6,
and M6; and

e Ratio of shear reinforcement ~ 1.5 — Set B: C-C-4,
C-M-6, and M-M-6.
Moreover, keeping the longitudinal reinforcement
constant for Grade 60 and MMFX, the influence of the
increasing transverse reinforcement can be perceived:

*  Flexural reinforcement constant, increasing — Set C:
C-C-6, C-C-4, and C-C-3; and

e Flexural reinforcement constant, transverse reinforcement
increasing — Set D: M-M-6, M-M-4, and M-M-3.

Table 4 displays the test results according to the new sets.
The following conclusions can be made:

¢ The method of normalization of the measured shear
strength, that is, with respect to the square root of the
concrete compressive strength, is questionable; the
values in Column 5 do not show the anticipated
increasing character for the different sets.

e Set A: the substitution of the shear reinforcement
considering 2 as the ratio of the yield strengths results
in similar load-bearing capacities.

e Set B: a substitution considering 1.5 as the ratio of the

yield strengths underestimates the contribution of
MMFX steel.

* Sets C and D: doubling the rate of shear reinforcement
let the ultimate shear load increase by 7 to 11% only.

*  For each of these conclusions, it should be kept in mind
that the load-bearing capacities of all of the test beams
were governed by the concrete compressive strength.
Furthermore, besides the higher yield strength, MMFX
has much better bond characteristics than ordinary steel.
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Shear load-deflection behavior

Figure 6 reveals the impact of longitudinal reinforcement
on the ultimate shear load. This effect should be incorporated
into the new code provisions.

Shear load-transverse strain behavior
The conclusions related to Fig. 7 are either not new or
misleading:

e Certainly both the initiation of the first shear crack as
well as of the first flexural crack do not depend on the
strength of the reinforcement. In the formula for stiffness,
only the cross sectional area and the Young’s
modulus occur.

e The initiation of the first shear crack using the vertical
PI gauge can be perceived only if the crack runs
through the gauge length.

*  Figure 7 gives the impression that the stirrups made of
both the Grade 60 ordinary steel as well as, for
example, Grade 120 MMFX steel, would yield, which
cannot be the case, especially for the MMFX steel.

The discusser poses a question regarding Fig. 9: Is there
any difference in the failure patterns of Beams C-C-4 and C-C-3?
In the discusser’s opinion, there is not. In all cases, the
concrete compression zone fails in compression shear. The
upper part of the so-called “diagonal crack at failure,” shown
in Fig. 9(a) is a sliding surface along the compression zone.

Crack width behavior

The use of average crack width as a criterion is
misleading. All codes control an upper fractile value of crack
width. Moreover, Shehata’s® equation does not consider the
different bond characteristics of the two types of reinforce-
ment. A direct replacement of conventional steel with
ASTM A1035 steel, as done in this test series, makes no
sense and, hence, any conclusion here is misleading, too.

The authors should explain why the M-M beams had
smaller shear crack widths than the C-M beams.

Mode of failure

The authors wrote: “for both C-M and M-M beams, failure
occurred once the compression strain in the diagonal direction
reached its ultimate value and led to crushing of the concrete
at the nodal zone.” The discusser agrees and poses the question:
Which level of the compression strain was detected as the
ultimate value? Was it the same for all beams?

Effect of steel type
The authors did not find any HP steel-specific characteristics.

ANALYTICAL MODELING

The discusser strongly disagrees that the measured-
predicted shear-load ratios found using the program
Response 2000 are more accurate than the design code
predictions. In five of the nine cases, Response 2000 yielded
very unsafe predictions. Considering the six test beams
consisting of HP steel, five results were unsafe.

In general, the practice of revealing analytical models
yielding average values of approximately 1.00, but with
considerable standard deviation that results in lower
fractile values strongly below 1.00, as “more accurate”
cannot continue.
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CONCLUSIONS

1. Direct replacement of conventional Grade 60 stirrups
with ASTM A1035 steel stirrups makes no sense.

2. The authors should explain why the ASTM A1035
longitudinal reinforcement increased shear strength.

3 & 4: Taking into account 48 ksi (331 MPa) service stress
level and a yield strength of 80 ksi (552 MPa), the rate of
exploitation of the real yield strength of HP steel of 120 ksi
(827 MPa) reveals that the application of HP steel is not
economical.

5. Whether pairing high-strength concrete with ASTM
A1035 steel could provide a better use for HP steel is
questionable. Increasing the concrete grade decreases the
ultimate strain; that is, the strength of HP steel cannot be
exploited in compression.

6. The detailed analysis using MCFT, included in
Response 2000, provided partly extremely unsafe predictions of
the overall shear strength of concrete members reinforced with
HP steel in five of six cases.

AUTHORS’ CLOSURE

The authors extend their thanks to the discusser for his
insightful and constructive discussion, and to provide the
authors an opportunity to further clarify the findings of the
experimental study. A response to each item of the discussion is
presented as follows:

1. The main objective of the study was to determine how
direct replacement (bar for bar) of high-performance steel
with conventional Grade 60 steel would affect the shear
strength of the concrete beam. This choice was made to
demonstrate the implications of such a design practice, which
has been used by some designers due to the lack of appropriate
design provisions developed by standards organizations. The
direct replacement applied to both longitudinal steel and to
the transverse steel.

2. The selection to include only one typical test result in
the paper was due to space limitations of the journal paper.
The reader may review full test results in the master’s thesis
by Sumpter.5

3. The small increase in the shear capacity measured for
test group “Set 17 is due to the nature of failure, which is
controlled by arch action. For Sets 2 and 3, failure was
controlled by concrete crushing at the maximum compression
zone. The strength for these sets did not increase by the same
ratio of steel area, but was observed to show higher relative
increases than Set 1. This was due in part to a high a/d ratio,
which allowed the steel to be better used as opposed to the
formation of arch action.

4. The authors acknowledge and appreciate the discusser’s
alternative method of analysis for a reader’s consideration.

5. The authors’ believe that shear strength is more directly
related to the square root of the concrete compressive
strength rather than solely to the concrete compressive
strength. This influenced the decision to normalize the data
based on the square root. The reader should refer to the total
percent increase given in Table 1 to evaluate the strength
increase in comparison to the baseline C-C beam for the
same stirrup spacing.

6. The authors agree with the discusser that the longitu-
dinal reinforcement should be considered in code provisions.

7. The intention behind Fig. 7 is to highlight the conservative
prediction of ACI 318-05 for high-performance steel. The
reported initiation of the first crack was determined both by
visual inspection and by the reading of PI gauges, which
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were designed to catch the first crack. The measured data
shown in Fig. 7 reflect redistribution of forces rather than
yielding of MMFX steel.

8. The authors agree that failure occurred once the compression
strain in the diagonal direction reached its ultimate value.

9. The smaller measured crack widths for beams reinforced
with HP steel is the result of better bond characteristics of ASTM
A1035 steel due to their rib configuration. References 7 and
8 provide detailed information regarding this behavior.

10. Unfortunately, the compressive strain was not recorded
during testing because it was located close to the applied load.

11. The authors agree that statistical data beyond averages
should be considered. Therefore, standard deviation as well
as the coefficient of variation was used in Tables 2 and 3 to
compare how closely Response 2000 predicted the strength
of the beams versus other design codes. The results indicate
that design codes over-predict the strength of the beams,
while Response 2000 yields results closer to the actual
strength because it considers the additional resistance
provided by the HP longitudinal steel reinforcement and
relies on the MCFT for analysis.

12. Test results indicated that the direct replacement of conven-
tional Grade 60 stirrups with ASTM A 1035 stirrups increased the
shear load capacity of flexural members, as shown in Table 1.

13. At failure, ASTM A1035 may remain in the elastic
region and its resistance increases by increasing the applied
load. The increase of the tension forces lead to an increase of
the forces in the compression zone, the dowel action, and,
thus, the overall shear strength.

14. ASTM A1035 steel reduced crack widths to an acceptable
level at a higher service level stress due to the type of
rib configuration used for their reinforcing bars, while
the conventional reinforcement exceeded the 0.016 in.
(0.406 mm) limit. This behavior provides overall
enhancement of serviceability.

15. Research conducted by NCHRP Project 12-64 has
indicated that the ultimate compressive strain of high-strength
concrete up to 18 ksi (124 MPa) is equal to or greater than 0.003.
Therefore, the use of high-strength concrete with high-
performance steel is expected to provide better use of the
materials. Achieving stress levels above 80 ksi (550 MPa) in HP
compression steel, however, may be limited because concrete
would need to be highly confined to maintain strain compatibility.

Disc. 106-S19/From the March-April 2009 AC/ Structural Journal, p. 178

Investigation of Dispersion of Compression in Bottle-Shaped Struts. Paper by Dipak Kumar Sahoo, Bhupinder

Singh, and Pradeep Bhargava

Discussion by Andor Windisch
ACI member, PhD, Karlsfeld, Germany

The authors investigated the maximum transverse tension
developing in bottle-shaped struts. They developed the equations
of isostatic lines of compression (ILC) for a panel with an aspect
ratio equal to 2 and applied them to investigate panels with aspect
ratios equal to 1. In the discusser’s opinion, the study should have
included panels with other aspect ratios.

The authors considered the place with the maximum slope
as the position of the resultant transverse tension, this is
supposed to be at x = a; however, in Fig. 5, to avoid a sharp
edge in the ILC, a horizontal tangent was considered.
Consequently, Eq. (9) to (10b) and (16) are questionable. In
comparison with other theoretical expressions, the authors
refer to the formulas in different codes dealing with the
bursting forces in post-tensioned anchorage zones, which
might be similar to their formulas, but do not characterize the
situation of panels with aspect ratios equal to 1, as shown in
Fig. 5 and tested (refer to Fig. 7).

Even if, during the tests, transverse compression stresses
under the loading and supporting plates were found, the authors
adhered to the transverse strain distribution (that is, transverse
tensile stresses also under the plates) shown in Fig. 7(b) and
derived Eq. (17) and (18), which are, therefore, questionable.

As can be observed in Fig. 9, the failure loads showed a
substantial scatter related to the same concentration ratio,
which contradicts the authors’ assumption that the mean
value of the concentration ratio can be considered at calculation of
the m value. Nevertheless, the authors should have chosen
the larger 1/m values corresponding to the different
concentration ratios b/a to obtain safer values.

The test results provide interesting information for the
users of the strut-and-tie models (and maybe also for the
code makers). In Table 2, the test results are listed and
regrouped according to different aspects. First of all, in
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Column 7, the compressive stresses under the shorter bearing
plates are shown (certainly, where the authors refer to 0 length, no
stress could be calculated; nevertheless, the development of the
failure loads P in Column 6 yield proper view of the influence of
the considered parameter). In Column 8, the compressive stresses
at failure under the shorter loading/supporting plate related to the
concrete strength £,/ are shown.

The following trends and conclusions can be found:

* Keeping the length of one the plates constant and
increasing the length of the other plate, the following
conclusions are contradictory:

Lines 1 to 4: In the case of constant 0 mm length, the
other plate lengths increased from 0 to 400 mm (15.75 in.):
B-2: 0.70 to B-4: 0.15—the failure load did not change
and the relative failure stresses decreased (dramatically).
Lines 5 to 7: In the case of constant 100 mm (4 in.)
lengths, the other plate length increased from 100 to
400: B-5: 0.98 to B-7: 1.30—the failure loads increased
and the relative failure stresses also increased.

° Lines 8 to 10: One plate had a constant 400 mm (15.75 mm)
length, the other increased from 100 to 400: B-7: 1.30 to
B-9: 0.51—the failure loads increased, the relative
failure stresses decreased (quite substantially).

* Having the same plate lengths at both sides, the relative
failure stress decreased when the plate lengths increased.

° Lines 11 to 15: B-11: 1.79 to B-9: 0.51; B-1 with O mm
length yielded an even higher value than 1.79, that is,
the failure loads increased and the relative compressive
stresses decreased.

¢ The mean value of the plate length was constant.

Lines 16 and 17: The mean value of length was 50 mm
(2 in.)—the failure loads were quite different, that is, the
mean value did not properly represent the real situation.
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Table 2—Evaluation of experimental results

Plate length, mm Compressive stress under Ratio of compressive
Concentration smaller loading plate, stress under smaller
Specimen ID | f;, MPa |Loaded face | Supported face ratio b/a P, kN N/mm? loading plate to f,!

1 2 3 4 5 6 7 8

1 B-1 36.5 0 0 0 191.8 — —
2 B-2 32.8 0 100 0.80 228.7 22.87 0.70
3 B-3 353 0 200 0.17 221.5 11.08 0.31
4 B-4 36.5 0 400 0.33 2232 5.58 0.15
5 B-5 332 100 100 0.17 325.2 32.52 0.98
6 B-6 315 100 200 0.25 402.1 40.21 1.28
7 B-7 36.9 100 400 0.42 481.0 48.10 1.30
8 B-7 36.9 100 400 0.42 481 48.10 1.30
9 B-8 33.7 200 400 0.50 600 30.00 0.89
10 B-9 37.0 400 400 0.67 747.7 18.69 0.51
11 B-1 36.5 0 0 0 191.8 — —
12 B-11 32.8 50 50 0.08 293.2 58.64 1.79
13 B-5 332 100 100 0.17 325.2 32.52 0.98
14 B-10 332 200 200 0.33 429.3 21.47 0.65
15 B-9 37.0 400 400 0.67 747.7 18.69 0.51
16 B-2 32.8 0 100 0.08 228.7 — —
17 B-11 32.8 50 50 0.08 293.2 58.64 1.79
18 B-3 353 0 200 0.17 221.5 — —
19 B-5 332 100 100 0.17 325.2 32.52 0.98
20 B-4 36.5 0 400 0.33 2232 — —
21 B-10 332 200 200 0.33 429.3 21.47 0.65

Note: I mm =0.0394 in.; 1 kN = 0.2248 kip; 1 N/mm? = 145 psi.

° Lines 18 and 19: The mean value of length was 100 mm
(4 in.)—the failure load of the specimen with the “mean”
plate length was larger than for specimens with the
different plates.

° Lines 20 and 21: The mean value of length was 200 mm
(7.87 in.)—the failure load of the specimen with the
“mean” plate length was larger than for specimen with the
different plates.

CONCLUSIONS
The proposed theoretical model is questionable, hence, the
derived parameter 1/m cannot be accepted. According to the
tests reported in the paper, the effective compressive strength
of concrete in the strut (as per Section A.3.1 of ACI 318-05,
Appendix A) is, in some cases, conservative, but is, in many
cases, on the unsafe side.

AUTHORS’ CLOSURE

The authors appreciate the discusser’s interest in the paper
and his critical review of the analytical and experimental
results presented therein. The authors’ response to the
pertinent issues raised in the discussion is as follows.

The analysis presented in the paper is not restricted to square
panels alone as is perceived by the discusser. The development of
the equations of the isostatic lines of compression (ILCs) and the
derivation of the proposed dispersion model are applicable to
bottle-shaped struts of all aspect ratios (Fig. 3 and 5). The reason
for choosing a square panel for the experimental validation has
been explained in the original paper.

The total transverse tension 7" in a bottle-shaped strut is
essentially independent of the aspect ratio. In Fig. 5, at the
point of intersection, the two ILCs emanating from the
loaded and the supported ends will have two different tangents
and will have two different components of transverse
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tension. In Eq. (9), it is the transverse tension component in
the incremental strip that is integrated and not the area
bounded by the incremental strip (Fig. 3 and 5). In Eq. (10a)
and (10b), the transverse tensions contributed by the two
ends have been algebraically added. The question of the
sharp edge in Fig. 5 would not have arisen if the panel length
in Fig. 5 along the x-axis had been taken as, for example,
twice the panel width. In Fig. 5, a square panel has been
considered to resemble the geometry of the experimental
panels. As explained in the paper, a square panel presents a
special geometry where the two end regions overlap each
other completely, causing the line of action of the resultant
transverse tensions of the two end blocks to coincide.

It is difficult to accurately measure or rigorously model the
transverse stress profile in a bottle-shaped strut. The authors have
assumed a simplified triangular stress distribution? along the axis
of the strut and the transverse compression at the ends has been
ignored to compensate for the additional area of the stress diagram
under the convex nonlinear stress profile (Fig. 7).

Scatter in the test results was not altogether unexpected
and it is more prominent because the number of specimens is
relatively small. It can be readily shown that a higher value
of 1/m alone does not indicate a larger magnitude of transverse
tension. The transverse tension can be calculated from the
following expression obtained by combining the ACI 318-05 19
expression for the nominal strength of a bottle-shaped strut and
the dispersion model proposed in the paper in Eq. 10(b).

T = f—;)(l—l%v) = (19)

15(0.85B, £ x 2bt)
32

(1 _[i’) = O.SBst’tbav(l _bav/a)
a
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where B, is the strut efficiency factor and ¢ is the panel thickness
(out-of-plane dimension).

A perusal of Eq. (19) clearly reveals that choosing a larger
1/m value (by choosing b, instead of b,,), as suggested by the
discusser, will not always increase the magnitude of the
transverse tension 7' and therefore not necessarily be safe.

With reference to Table 2, the authors would like to
respond as follows:

1. It is not clear as to how the compressive stresses under
the smaller loading plates were calculated in Column 7 for
Specimens B-1, B-2, B-3, and B-4, in which the smaller
bearing areas are zero. Keeping the plate length on one side
of a panel constant, as the plate length was increased on the
other side, the cracking load P was observed to increase. The
increase in cracking load can be related to the higher average
bearing areas. Because the relative failure stresses based on
the smaller bearing areas were not showing any trend in the
experimental results, the authors’ choice of using the
average values of bearing areas is justified.

2. Having the same plate lengths on both sides, the relative
failure stresses were observed to decrease when the plate
length was increased. This is an expected trend because
increasing the bearing length while keeping the panel width
constant restricts the lateral dispersion of the compressive
stress trajectories, which in turn leads to a reduction in the
strut efficiency.23

3. With reference to Lines 17 through 21 of Table 2, the authors
agree that the cracking loads of the pairs of Specimens B-2 and
B-11, B-3 and B-5, and B-4 and B-10 do not match well. The

zero bearing length in Specimens B-1 through B-4 was simu-
lated by placing a 16 mm (0.63 in.) diameter round bar, and
the small bearing area resulted in premature bearing failure.
The results of the four specimens having zero plate lengths,
B-1 through B-4, therefore produced maximum scatter in
Fig. 9. Nevertheless, all the results except one were on the
safe side of the predicted trend (Fig. 9).

With reference to the discusser’s conclusions, the authors
would like to mention that the theoretical model in the paper
was derived from first principles and validated with a limited
number of experimental tests. The relative failure stresses
reported by the discusser in Column 8 of Table 2 at best
indicate a value of 0.85f3,, which for plain concrete bottle-
shaped struts as per the ACI Code!?is 0.51. Except for Lines
1 through 4 in Table 2, where the discusser’s calculations
seem to be incorrect, the relative failure stress in none of the
cases falls below 0.51 (Column 8, Table 2). Therefore, the
discusser’s analysis of the test results in the paper does not
seem to support the discusser’s conclusion that the effective
compressive strength as per Section A.3.1 of ACI 318-05,
Appendix A" is unsafe.
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Deformation Capacity of Reinforced Concrete Columns. Paper by Hossein Mostafaei, Frank J. Vecchio, and

Toshimi Kabeyasawa

Discussion by Andor Windisch
ACI member, PhD, Karlsfeld, Germany

The authors are to be complimented for their interesting
attempt to apply the MCFT, which was conceived for short-
term monotonic loading only, to estimate the ultimate defor-
mation of columns that failed after cyclic loading.

DERIVATION OF ANALYTICAL MODEL

Apart from the errors in Eq. (7) and (8) (o should be replaced
with p), it should be mentioned that a Mohr’s circle may never
yield either equilibrium or compatibility relationships: it simply
gives the possibility to transform the stress (or deformation)
components from one coordinate system to another.

To calculate the angle 6, the strains ¢, €,, and ¢, are
necessary; however, the discusser cannot detect where the
three values are derived. The principal compression stress
pattern with the angle is given in Fig. 4(a). Does Eq. (12)
follow this pattern? Please clarify.

The concrete compression softening factor (Eq. (16)) was
derived for monotonic loading. Is it valid for heavily alternating
loading paths, too? The shear stress transferred by aggregate
interlock across a crack surface (Eq. (17)) was found for the
monotonic loading path, too. Does it remain valid for
alternating loading? Isn’t there any softening?

The validity of the formula for average crack spacing was
never proven. What average crack spacing can be found for
Specimen No. 12 shown in Fig. 8?
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In Eq. (19), the average steel stress in the transverse
reinforcement is the yield strength. According to the MCFT,
this means that the stress and strain in transverse steel in the
crack are far beyond the yielding values. Do w and t; remain
valid in case of yielding transverse reinforcement?

FLEXURE MECHANISM
It is not clear how Eq. (20), (21a), and (21b) containing the
Young’s modulus of concrete are compatible with the actual
and equivalent concrete stresses shown in Fig. 7 (elastic
behavior according to the equations and inelastic behavior
according to the figure).

PROCEDURES FOR ESTIMATION
OF ULTIMATE DEFORMATION
To simplify, the procedure of estimation interpolation for
drshall be deleted; after so many assumptions, the difference
between & and d is negligible.

NUMERICAL EXAMPLES
It is a pity that the authors did not give more details of their
calculations in the form of tables. In comparing the analytical and
test results shown in Fig. 11, it can be concluded that most of
the specimens were still loaded partly far beyond the ultimate
drift ratio predicted by the analytical model, that is, no
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failure of the specimens occurred. With MCFT, the load-
deformation response of reinforced concrete members could
be predicted. It would be interesting to learn which analytical
drift ratio versus lateral load paths were determined for the
different specimens reported in Fig. 11.

AUTHORS’ CLOSURE
The authors are thankful to the discusser for raising
important comments and questions regarding the axial-
shear-flexure interaction methodology presented in the
paper. These remarks have been reviewed and the
following explanations are provided for clarification of the
methodology, accordingly.

DERIVATION OF ANALYTICAL MODEL

The stress and strain relations, expressed in a Mohr’s
circle in the MCFT and the ASFI methods, correspond to the
average stress and strain condition of the shear element.
They are employed for compatibility and equilibrium
conditions by assuming unit dimensions for the element, as
shown in Fig. 5 and 6 of the paper. In other words, equilibrium
and compatibility conditions are derived for the entire
element; however, they are converted and expressed in the
stress and strain fields.

The correct form of Eq. (7) and (8), respectively, are

Oy =fex + Prfsx (32)
Oy =fcy + pyf;vy (33)

The crack angle 0 is determined in the stress field by
solving Eq. (9) and (10), which is incorporated in Eq. (14) and (15)

(34)

Figure 4(a) was drawn for the assumption related to Eq. (6). It
illustrates the pattern of the principal compression stress, and
therefore strain, along the entire column. It shows that the
principal compression stress and strain at the points along
the curve are very close to the value of the compression stress
and strain obtained from a section analysis. Therefore, Eq. (6)
could represent the maximum compression strain or assume to
provide the principal compression strain of the element
between the two flexure sections. Equation (34) provides an
average value for the entire pattern shown in this figure when
only two flexure sections have been selected: one at the end
and one at the inflection point.

The approach presented in this paper can be used only to
estimate the point of the ultimate capacity, which is the
ultimate deformation and load of the column; however, the
equations have been derived from a monotonic loading
approach. Therefore, although the method presents suitable
agreement for the column specimens in Fig. 11, the attempt
was not to assess and include the effect of cycling loading.
Therefore, for specimens with heavily cyclic loading, the
corresponding effects need to be included in the analysis.

In the ASFI method, the crack spacing in the longitudinal
direction of the column, S,, is the same as the hoop spacing.
Crack spacing in the transverse direction, S,, is the
maximum distance between the longitudinal bars. These are
the average smeared crack spacings and not the maximum
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values. For specimen No. 12, §, = 150 mm (6 in.) and Sy =
60 mm (2.4 in.), which yields to S, = 72 mm (2.8 in.), derived
from the analysis at the maximum load stage. Based on
the specimen dimension perpendicular to the crack, this means
that approximately four cracks could appear on the columns, as is
the case for the column specimen in Fig. 8.

Equation (19) provides a maximum limit for shear stress. As
mentioned previously, the method proposed in this paper only
estimates the load and deformation of the column at the
ultimate stage. For specimens containing transverse rein-
forcement, the lateral load drops as soon as the transverse bars
yield and the analysis ends (defining the ultimate load stage).

FLEXURE MECHANISM
Both the flexural and shear models, as well as the MCFT,
use a secant stiffness approach for the analysis. The values for
the Young’s modulus of concrete in Eq. (20), (21a), and (21b)
are the inelastic values. They are determined by dividing the
value of the concrete compressive stress by the concrete
compressive strain at the corresponding loading stage.

PROCEDURES FOR ESTIMATION
OF ULTIMATE DEFORMATION

The value of draffects the magnitude of the lateral load. In
the case of columns with dominant flexural response, due to
the effect of support confinement, a plastic hinge will form a
small distance away from the support. This will result in
increasing the overall lateral load capacity of the column.
This resulted in up to approximately a 20% lateral load
reduction for flexure column specimens studied in this
paper. Therefore, the authors believe that this adjustment
needs to be employed in the analysis.

NUMERICAL EXAMPLES

The analytical results in Fig. 11 are the ultimate points of
deformations and loads for the column specimens. As
mentioned previously, the ultimate deformation capacity
approach presented in this paper can be implemented only
for evaluation of the load and deformation of the columns at
the ultimate stage. Although one may try to estimate pre- or
post-peak response of the column by implementing a small
modification in the current method, it has not been verified
for full load deformation response analysis. This method is a
simplification of the original ASFI method, which is a
method capable of doing full load deformation analysis.3 As
mentioned in the paper, for columns with very low shear
stress (those are columns with very high shear capacity and
very low flexure load), the compression softening factor f3 is
limited to 0.15. This means the method overestimates the
ultimate deformation for these columns. Further studies and
modifications are needed for the method in this regard.

It is important to note that comprehensive analysis software
has been developed at the University of Toronto, based on the
MCFT, which is capable of predicting the entire load deforma-
tion response, including under cycling loading regimes. 16
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Evaluation of Bundled Bar Lap Splices. Paper by Tarek R. Bashandy

Discussion by Andor Windisch
ACI member, PhD, Karlsfeld, Germany

The author should be complimented for his interesting test
series. In explaining the background, however, one important
influencing factor in splicing members in flexure was not
mentioned: the horizontal splitting of the concrete cover at the
end of the spliced reinforcing bar due to the reinforcing bar’s
bending stiffness. At the very end of a spliced reinforcing bar,
the curvature must “jump” from zero to the finite curvature in
the member. At the jump, a theoretically infinite transversal
force must develop that lets the cover horizontally crack.
This crack mobilizes the transverse (confining) reinforcement
positioned mainly at the ends of the splice length. The greatest
influence of the concrete cover is its resistance in tension. The
influence of the side concrete cover and the clear spacing can
easily be understood.

It is obvious as well that the flexural rigidity of one 32 mm
diameter (No. 10) reinforcing bar is four times higher than
that of four 16 mm diameter (No. 5) reinforcing bars. This
explains the increasing failure loads with an increasing
numbers of bars in the bundle without stirrups.

Comparing Fig. 2 and 4, some doubt may arise concerning
the effective bond areas: along the splice, the contact of the
bundles substantially reduces the surface embedded in
concrete. The efficient perimeter ratios are 1:1.06:1.0:1.25,
that is, the three-bar bundle has the same bond area as the
single bar. Nevertheless, this deviation can not be realized in
the experimental program, as the failures were not bond
governed as revealed comparing the average measured steel
stresses of the specimens in Groups 1 and 4.

Figure 6(a) reveals that (at least) Beams B7 to B9 were
still uncracked in flexure as the failure due to splitting crack
(refer to Fig. 5) occurred. The average measured steel
stresses at P,,,,, shown in Table 1, are still far away from the
yield strength of the reinforcing bars.

The distribution of stresses among bars in the bundle
reflects the position of the bars related to the neutral axis
only, (refer to Fig. 8(a) and (c)). Certainly, the position of the
strain gauges with regard to the flexural axis of the reinforcing
bars influences the measured strains.

The authors’ test results confirmed the requirement of ACI
318-05 concerning the application of stirrups or ties along
the splice length. The author is correct: additional tests with
steel yielding are required to confirm the validity of the
conclusions of this study. Until then, the bar cutoffs within
the bundle should be staggered.

AUTHOR’S CLOSURE
The purpose of the paper was to evaluate the behavior of
bundled bar lap splices compared with splices of single bars.
The horizontal splitting at the end of the splice described in
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the discussion occurs in both bundled and single bar splices,
but was parallel to the transverse reinforcement (and did not
cross it) and therefore did not develop any force in this rein-
forcement. The horizontal crack at the end of the splice did
not affect the splice strength for all types of splices.

There was no correlation between the flexural rigidity of
the spliced bars and the splice strength. Although two- and
three-bar bundles have lower rigidity compared to single
bars, the failure load was generally not higher than equivalent-
diameter single-bar bundles. Increasing the number of bars
from an equivalent-diameter single bar to two- or three-bar
bundle did not increase the failure load. However, four-bar
bundles had the lowest rigidity but their failure load was
higher than equivalent-diameter single bars. All failures were
governed by bond, as indicated by the cracking pattern;
sudden failure mode; and examining the specimens after
easily removing the concrete cover. It is not possible to draw
direct conclusions by directly comparing Groups 1 and 4
because there are variations in two parameters (splice length
and concrete cover). The author agrees with the discusser that
the variations of effective parameter did not directly affect the
failure load. This was presented in the second conclusion.

All specimens were cracked at a relatively low load (20 to
25% of the failure load). This can be concluded by examining
the rate of change of bar stresses in Fig. 8, which indicates
that flexural cracks occurred at approximately 20 kN (4.5 kips)
load. It is not possible to draw conclusions regarding cracking
load from Fig. 6 due to the small scale and the relatively low load
and deflection at cracking. Figure 5 shows the specimen after
failure and removing load; therefore, thin flexural cracks
could not be captured in comparison with the wide splitting
crack, especially cracks that were not marked.

The distribution of stresses among bars in the bundle had
no consistent correlation with the position of the bars related
to the neutral axis. For example, in Fig. 8(b), bars placed at
the same distance from the neutral axis did not have the same
stress. Moreover, the bar closer to the neutral axis had higher
stress than one of the bars at a further position from the
neutral axis. As presented in this study and the referenced
previous study, there were no consistent trends in the
distribution of stress within a bundle between bars at the
same depth within the section.

Additional tests with steels yielding are required to understand
the distribution of stresses among bars in a bundle. However,
conclusions regarding bond strength of bundles cannot be drawn
from specimens in which steel yields before bond failure.
Nevertheless, additional tests with steel stress close to yield are
required to confirm the validity of the conclusions of this study.
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